
Bernd J Kröger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4658678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computer-Implemented Articulatory Models for Speech Production: A Review. Frontiers in Robotics and AI, 2022, 9, 796739.	3.2	2
2	On the Emergence of Phonological Knowledge and on Motor Planning and Motor Programming in a Developmental Model of Speech Production. Frontiers in Human Neuroscience, 2022, 16, .	2.0	2
3	Hierarchical Sequencing and Feedforward and Feedback Control Mechanisms in Speech Production: A Preliminary Approach for Modeling Normal and Disordered Speech. Frontiers in Computational Neuroscience, 2020, 14, 573554.	2.1	3
4	Modeling the Mental Lexicon as Part of Long-Term and Working Memory and Simulating Lexical Access in a Naming Task Including Semantic and Phonological Cues. Frontiers in Psychology, 2020, 11, 1594.	2.1	8
5	The LS Model (Lexicon-Syllabary Model). , 2019, , 239-262.		0
6	Neural Modeling of Speech Processing and Speech Learning. , 2019, , .		4
7	Natural Language Processing in Large-Scale Neural Models for Medical Screenings. Frontiers in Robotics and Al, 2019, 6, 62.	3.2	1
8	Emergence of an Action Repository as Part of a Biologically Inspired Model of Speech Processing: The Role of Somatosensory Information in Learning Phonetic-Phonological Sound Features. Frontiers in Psychology, 2019, 10, 1462.	2.1	6
9	A Selection of Literature on Models. , 2019, , 225-237.		Ο
10	Anatomical and Functional Structure of the Nervous System. , 2019, , 87-131.		0
11	Neural Modeling: The STAA Approach. , 2019, , 133-159.		0
12	Inhibiting Basal Ganglia Regions Reduces Syllable Sequencing Errors in Parkinson's Disease: A Computer Simulation Study. Frontiers in Computational Neuroscience, 2018, 12, 41.	2.1	4
13	Sprachwahrnehmung. , 2018, , 51-74.		Ο
14	Neuronale Modellierung: der NEF-Ansatz. , 2018, , 165-224.		0
15	Eine Literaturauswahl an Modellen. , 2018, , 227-239.		Ο
16	Neuronale Modellierung: der STAA-Ansatz. , 2018, , 139-163.		0
17	Modeling Interactions between Speech Production and Perception: Speech Error Detection at Semantic and Phonological Levels and the Inner Speech Loop. Frontiers in Computational Neuroscience, 2016, 10, 51.	2.1	17
18	Reduction of dopamine in basal ganglia and its effects on syllable sequencing in speech: A computer simulation study. Basal Ganglia, 2016, 6, 7-17.	0.3	16

Bernd J Kröger

#	Article	IF	CITATIONS
19	Seeing [u] aids vocal learning: Babbling and imitation of vowels using a 3D vocal tract model, reinforcement learning, and reservoir computing. , 2015, , .		14
20	The contribution of phonation type to the perception of vocal emotions in German: An articulatory synthesis study. Journal of the Acoustical Society of America, 2015, 137, 1503-1512.	1.1	22
21	The emergence of phonetic–phonological features in a biologically inspired model of speech processing. Journal of Phonetics, 2015, 53, 88-100.	1.2	13
22	Interconnected growing self-organizing maps for auditory and semantic acquisition modeling. Frontiers in Psychology, 2014, 5, 236.	2.1	7
23	Modeling speech production using the Neural Engineering Framework. , 2014, , .		6
24	A new framework of neurocomputational model for speech production. , 2014, , .		1
25	Associative learning and self-organization as basic principles for simulating speech acquisition, speech production, and speech perception. EPJ Nonlinear Biomedical Physics, 2014, 2, .	0.8	27
26	Modulation of Cognitive Goals and Sensorimotor Actions in Face-to-Face Communication by Emotional States: The Action-Based Approach. Smart Innovation, Systems and Technologies, 2014, , 379-386.	0.6	0
27	Growing self-organizing map approach for semantic acquisition modeling. , 2013, , .		6
28	A neural understanding of speech motor learning. , 2013, , .		2
29	Neural representation of the sensorimotor speech–action-repository. Frontiers in Human Neuroscience, 2013, 7, 121.	2.0	11
30	Mapping of functions to brain regions: A neuro-phonetic model of speech production, perception, and acquisition. Faits De Langues, 2011, 37, 203-212.	0.2	1
31	Model-Based Reproduction of Articulatory Trajectories for Consonant–Vowel Sequences. IEEE Transactions on Audio Speech and Language Processing, 2011, 19, 1422-1433.	3.2	56
32	Towards an Articulation-Based Developmental Robotics Approach for Word Processing in Face-to-Face Communication. Paladyn, 2011, 2, .	2.7	6
33	Movements and Holds in Fluent Sentence Production of American Sign Language: The Action-Based Approach. Cognitive Computation, 2011, 3, 449-465.	5.2	11
34	Episodic dysarthria related to vascular medullary compression. Journal of Neurology, 2010, 257, 296-299.	3.6	2
35	A model for production, perception, and acquisition of actions in face-to-face communication. Cognitive Processing, 2010, 11, 187-205.	1.4	27
36	The effectiveness of traditional methods and altered auditory feedback in improving speech rate and intelligibility in speakers with Parkinson's disease. International Journal of Speech-Language Pathology, 2010, 12, 426-436.	1.2	27

Bernd J Kröger

#	Article	IF	CITATIONS
37	Audiovisual Tools for Phonetic and Articulatory Visualization in Computer-Aided Pronunciation Training. Lecture Notes in Computer Science, 2010, , 337-345.	1.3	8
38	Phonemic, sensory, and motor representations in an action-based neurocomputational model of speech production. , 2010, , 23-36.		7
39	Cesture Duration and Articulator Velocity in Plosive-Vowel-Transitions. Lecture Notes in Computer Science, 2010, , 346-353.	1.3	1
40	Effects of Syllable Language Model on Distinctive Phonetic Features (DPFs) based Phoneme Recognition Performance. Journal of Multimedia, 2010, 5, .	0.3	3
41	Phoneme recognition based on distinctive phonetic features (DPFs) incorporating a syllable based language model. , 2009, , .		Ο
42	Towards a neurocomputational model of speech production and perception. Speech Communication, 2009, 51, 793-809.	2.8	145
43	Articulatory Synthesis of Speech and Singing: State of the Art and Suggestions for Future Research. Lecture Notes in Computer Science, 2009, , 306-319.	1.3	9
44	Articulatory Speech Re-synthesis: Profiting from Natural Acoustic Speech Data. Lecture Notes in Computer Science, 2009, , 344-355.	1.3	8
45	An Evaluation of the Aurora System as a Flesh-Point Tracking Tool for Speech Production Research. Journal of Speech, Language, and Hearing Research, 2008, 51, 914-921.	1.6	13
46	The Organization of a Neurocomputational Control Model for Articulatory Speech Synthesis. Lecture Notes in Computer Science, 2008, , 121-135.	1.3	3
47	A Gesture-Based Concept for Speech Movement Control in Articulatory Speech Synthesis. , 2007, , 174-189.		27
48	Simulation of Losses Due to Turbulence in the Time-Varying Vocal System. IEEE Transactions on Audio Speech and Language Processing, 2007, 15, 1218-1226.	3.2	42
49	18. Zur phonetischen Realisierung von Sprechtempoäderungen unter Einbeziehung von artikulatorischer Reorganisation: Artikulatorische und perzeptive Untersuchungen. , 1996, , 171-185.		1
50	A gestureâ€based dynamic model describing articulatory movement data. Journal of the Acoustical Society of America, 1995, 98, 1878-1889.	1.1	39
51	A Gestural Production Model and Its Application to Reduction in German. Phonetica, 1993, 50, 213-233.	0.6	25
52	Coarticulation rules in an articulatory model. Journal of Phonetics, 1991, 19, 465-471.	1.2	1
53	Construction And Control Of A Three-Dimensional Vocal Tract Model. , 0, , .		44
54	Synthesis of breathy, normal, and pressed phonation using a two-mass model with a triangular glottis. , 0, , .		30

#	Article	IF	CITATIONS
55	visual articulatory model and its application to therapy of speech disorders: a pilot study. ZAS Papers in Linguistics, 0, 40, 79-94.	0.0	5
56	Modeling sensory-to-motor mappings using neural nets and a 3d articulatory speech synthesizer. , 0, , .		8
57	Two- and three-dimensional visual articulatory models for pronunciation training and for treatment of speech disorders. , 0, , .		14