Andraž Kocjan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4658198/publications.pdf

Version: 2024-02-01

304743 206112 2,459 69 22 48 citations h-index g-index papers 69 69 69 3503 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology, 2015, 10, 277-283.	31.5	1,103
2	The effect of nano-structured alumina coating on resin-bond strength to zirconia ceramics. Dental Materials, 2010, 26, 688-696.	3 . 5	99
3	The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics. Acta Biomaterialia, 2015, 11, 477-487.	8.3	87
4	The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics. Scientific Reports, 2017, 7, 2541.	3.3	79
5	Influence of contamination on resin bond strength to nanoâ€structured aluminaâ€coated zirconia ceramic. European Journal of Oral Sciences, 2010, 118, 396-403.	1.5	62
6	Ageing of dental zirconia ceramics. Journal of the European Ceramic Society, 2012, 32, 2613-2622.	5.7	62
7	The course of the hydrolysis and the reaction kinetics of AlN powder in diluted aqueous suspensions. Journal of the European Ceramic Society, 2011, 31, 815-823.	5 . 7	48
8	A study on crystal structure, bonding and hydriding properties of Ti–Fe–Ni intermetallics – Behind substitution of iron by nickel. International Journal of Hydrogen Energy, 2012, 37, 8408-8417.	7.1	48
9	The influence of temperature and time on the AlN powder hydrolysis reaction products. Journal of the European Ceramic Society, 2008, 28, 1003-1008.	5 . 7	46
10	Fractography of self-glazed zirconia with improved reliability. Journal of the European Ceramic Society, 2017, 37, 4339-4345.	5.7	43
11	Ageing kinetics and strength of airborne-particle abraded 3Y-TZP ceramics. Dental Materials, 2017, 33, 847-856.	3 . 5	41
12	Colloidal processing and partial sintering of high-performance porous zirconia nanoceramics with hierarchical heterogeneities. Journal of the European Ceramic Society, 2013, 33, 3165-3176.	5.7	40
13	Influence of thermo-mechanical cycling on porcelain bonding to cobalt–chromium and titanium dental alloys fabricated by casting, milling, and selective laser melting. Journal of Prosthodontic Research, 2018, 62, 184-194.	2.8	39
14	Evolution of Aluminum Hydroxides in Diluted Aqueous Aluminum Nitride Powder Suspensions. Crystal Growth and Design, 2012, 12, 1299-1307.	3.0	34
15	Catalytic Hydrogenation, Hydrodeoxygenation, and Hydrocracking Processes of a Lignin Monomer Model Compound Eugenol over Magnetic Ru/C–Fe2O3 and Mechanistic Reaction Microkinetics. Catalysts, 2018, 8, 425.	3.5	34
16	Photocatalytic activity of nanostructured γ-Al2O3/TiO2 composite powder formed via a polyelectrolyte-multilayer-assisted sol–gel reaction. Materials Research Bulletin, 2012, 47, 12-17.	5.2	30
17	Complexity of the relationships between the sintering-temperature-dependent grain size, airborne-particle abrasion, ageing and strength of 3Y-TZP ceramics. Dental Materials, 2016, 32, 510-518.	3.5	30
18	Superhydrophobic Nanostructured Boehmite Coatings Prepared by AlN Powder Hydrolysis. International Journal of Applied Ceramic Technology, 2011, 8, 848-853.	2.1	28

#	Article	IF	CITATIONS
19	Synthesis of Carbon–Nitrogen–Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fireâ€Retardant Material. Angewandte Chemie - International Edition, 2018, 57, 9764-9769.	13.8	28
20	The influence of yttrium-segregation-dependent phase partitioning and residual stresses on the aging and fracture behaviour of 3Y-TZP ceramics. Acta Biomaterialia, 2017, 62, 306-316.	8.3	26
21	Magnetically separable Ru-based nano-catalyst for the hydrogenation/hydro-deoxygenation of lignin-derived platform chemicals. Materials Research Letters, 2018, 6, 426-431.	8.7	26
22	The effect of nano-structured alumina coating on the bond strength of resin-modified glass ionomer cements to zirconia ceramics. Journal of the European Ceramic Society, 2012, 32, 2641-2645.	5.7	24
23	Nanoroughening of sandblasted 3Y-TZP surface by alumina coating deposition for improved osseointegration and bacteria reduction. Journal of the European Ceramic Society, 2019, 39, 4347-4357.	5.7	24
24	A hierarchical Ru-bearing alumina/magnetic iron-oxide composite for the magnetically heated hydrogenation of furfural. Green Chemistry, 2020, 22, 5978-5983.	9.0	22
25	A Simple Method for the Preparation of Nanostructured Aluminate Coatings. Journal of the American Ceramic Society, 2009, 92, 2451-2454.	3.8	21
26	In vivo aging of zirconia dental ceramics – Part I: Biomedical grade 3Y-TZP. Dental Materials, 2021, 37, 443-453.	3.5	20
27	The effect of mechanical fatigue and accelerated ageing on fracture resistance of glazed monolithic zirconia dental bridges. Journal of the European Ceramic Society, 2017, 37, 4415-4422.	5.7	19
28	Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting. Journal of Prosthetic Dentistry, 2020, 123, 491-499.	2.8	18
29	Desorption of hydrogen from Ti–Zr–Ni hydrides using a mass spectrometer. International Journal of Hydrogen Energy, 2010, 35, 259-265.	7.1	17
30	Evolution of phase composition and microstructure of sodium potassium niobate –based ceramic during pressure-less spark plasma sintering and post-annealing. Ceramics International, 2019, 45, 10429-10437.	4.8	17
31	Processing of zirconia nanoceramics from a coarse powder. Journal of the European Ceramic Society, 2015, 35, 1285-1295.	5.7	16
32	Porous Alumina Ceramics Prepared by the Hydrolysis-Assisted Solidification Method. Journal of the American Ceramic Society, 2011, 94, 1374-1379.	3.8	15
33	The Hydrolysis of AlN Powder – A Powerful Tool in Advanced Materials Engineering. Chemical Record, 2018, 18, 1232-1246.	5.8	15
34	<i>In situ</i> generation of 3D graphene-like networks from cellulose nanofibres in sintered ceramics. Nanoscale, 2018, 10, 10488-10497.	5.6	13
35	Amorphous-to-quasicrystalline transformations in the Ti–Zr–Ni and Ti–Hf–Ni systems. Journal of Alloys and Compounds, 2008, 457, 144-149.	5.5	12
36	Hierarchical macroporous–mesoporous γ-alumina monolithic green bodies with high strength. Journal of Materials Science, 2017, 52, 11168-11178.	3.7	12

#	Article	IF	CITATIONS
37	In vivo ageing of zirconia dental ceramics — Part II: Highly-translucent and rapid-sintered 3Y-TZP. Dental Materials, 2021, 37, 454-463.	3.5	12
38	Stereometric analysis of nanostructured boehmite coatings synthesized by aluminum nitride powder hydrolysis. Ceramics International, 2012, 38, 4853-4859.	4.8	11
39	TiN-Nanoparticulate-Reinforced ZrO2 for Electrical Discharge Machining. Materials, 2019, 12, 2789.	2.9	9
40	Pre-oxidation of selective-laser-melted titanium dental alloy: effects on surface characteristics and porcelain bonding. Journal of Adhesion Science and Technology, 2021, 35, 2094-2109.	2.6	9
41	Novel cordierite-acicular mullite composite for diesel particulate filters. Ceramics International, 2022, 48, 2273-2280.	4.8	9
42	Selective hydrogenation of Ti–Zr–Ni alloys. International Journal of Hydrogen Energy, 2011, 36, 3056-3061.	7.1	8
43	Translucent Yttria―and Silicaâ€Doped Mullite Ceramics with Anisotropic Grains Produced by Spark Plasma Sintering. Journal of the American Ceramic Society, 2016, 99, 3090-3096.	3.8	8
44	Physical properties of Zr50Cu40â^xAl10Pdx bulk glassy alloys. Journal of Alloys and Compounds, 2010, 504, 16-21.	5.5	7
45	The effect of firing protocols on the resin-bond strength to alumina-coated zirconia ceramics. Advances in Applied Ceramics, 2020, 119, 267-275.	1.1	7
46	Percolation threshold in ceramic composites with isotropic conducting nanoparticles. Journal of the European Ceramic Society, 2020, 40, 1684-1691.	5.7	7
47	Effect of sintering and boron content on rare earth dopant distribution in long afterglow strontium aluminate. Journal of the European Ceramic Society, 2020, 40, 4129-4139.	5.7	7
48	Additive manufacturing of ceramics from thermoplastic feedstocks. Open Ceramics, 2021, 6, 100129.	2.0	7
49	Impact strengthening of 3Y-TZP dental ceramic root posts. Journal of the European Ceramic Society, 2020, 40, 4765-4773.	5 . 7	6
50	The sintering-temperature-related microstructure and phase assemblage of alumina-doped and alumina–silica-co-doped 3-mol%-yttria-stabilized tetragonal zirconia. Scripta Materialia, 2015, 105, 50-53.	5.2	5
51	Fracture resistance of endodontically treated maxillary incisors restored with zirconia posts: effect of the internal plateau preparation. Advances in Applied Ceramics, 2019, 118, 78-82.	1.1	5
52	Effect of airborne-particle abrasion of yttria-containing zirconia dental ceramics on mechanical properties before and after regeneration firing. Journal of the European Ceramic Society, 2022, 42, 5035-5044.	5.7	5
53	The effect of hydrogen on the magnetic properties of quenched Ti–Zr–Ni rods. Journal of Magnetism and Magnetic Materials, 2010, 322, 2851-2856.	2.3	4
54	Structural and magnetic changes in hydrogenated TiFe1â^'xNix alloys. Journal of Magnetism and Magnetic Materials, 2012, 324, 2043-2050.	2.3	4

#	Article	IF	Citations
55	Predicting the yield stress of paraffin-wax suspensions. Powder Technology, 2016, 291, 1-6.	4.2	4
56	Freeze-casting of highly porous cellulose-nanofiber-reinforced $\hat{I}^3\ddot{E}$ —Al2O3 monoliths. Open Ceramics, 2021, 5, 100069.	2.0	4
57	Clinical evaluation of monolithic zirconia multiunit posterior fixed dental prostheses. Journal of Prosthetic Dentistry, 2022, 128, 1258-1264.	2.8	4
58	The impact of ambient gas on the magnetic properties of Ti40Zr40Ni20 powders during mechanical alloying. Journal of Magnetism and Magnetic Materials, 2011, 323, 301-305.	2.3	3
59	Suppressed Reactivity of <scp><scp>AlN</scp></scp> Powder in Water at 5°C. Journal of the American Ceramic Society, 2013, 96, 1032-1034.	3.8	3
60	Triggering the aqueous interparticle association of $\hat{I}^3\hat{a}\in Al2O3$ hierarchical assemblies using divalent cations and cellulose nanofibers. Journal of the European Ceramic Society, 2021, 41, 590-598.	5.7	3
61	Effect of composition on the i-phase cell parameter of Ti–(Zr,Cu)–Ni alloys. Journal of Non-Crystalline Solids, 2010, 356, 2769-2773.	3.1	2
62	Influence of nanostructured alumina coating on the clinical performance of zirconia cantilevered resin-bonded fixed dental prostheses: Up to 3-year results of a prospective, randomized, controlled clinical trial. Journal of Prosthetic Dentistry, 2021, , .	2.8	2
63	Zirconia Ceramics: Clinical and Biological Aspects in Dentistry. , 2021, , 817-832.		2
64	Synthesis of Carbon–Nitrogen–Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fireâ€Retardant Material. Angewandte Chemie, 2018, 130, 9912-9917.	2.0	1
65	The Influence of Nanostructured Alumina Coating on Bonding and Optical Properties of Translucent Zirconia Ceramics: In Vitro Evaluation. Coatings, 2021, 11, 1126.	2.6	1
66	Nanostructured Alumina Coatings Formed by a Dissolution/Precipitation Process Using AIN Powder Hydrolysis. Ceramic Engineering and Science Proceedings, 0, , 133-142.	0.1	1
67	Microstructure-property relationships in composites of 8YSZ ceramics and in situ graphitized nanocellulose. Journal of the European Ceramic Society, 2022, 42, 4594-4606.	5.7	1
68	Resin Bond Strength to Alumina Coated Ce-TZP/Al ₂ O ₃ Dental Ceramic. Key Engineering Materials, 0, 493-494, 632-636.	0.4	0
69	Nanostructured Alumina Coatings Formed by a Dissolution/Precipitation Process Using AlN Powder Hydrolysis. Ceramic Engineering and Science Proceedings, 0, , 251-260.	0.1	0