Kajornsak Faungnawakij

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4657161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The efficient conversion of D-Fructose to 5-Hydroxymethylfurfural using organic acids as catalytic promoters. Biomass Conversion and Biorefinery, 2023, 13, 6705-6714.	4.6	2
2	Hydrodeoxygenation of palm oil to green diesel products on mixed-phase nickel phosphides. Molecular Catalysis, 2022, 523, 111422.	2.0	17
3	CuAl2O4–CuO–Al2O3 catalysts prepared by flame-spray pyrolysis for glycerol hydrogenolysis. Molecular Catalysis, 2022, 523, 111426.	2.0	8
4	Roles of supports on reducibility and activities of Cu3P catalysts for deoxygenation of oleic acid: In situ XRD and XAS studies. Molecular Catalysis, 2022, 523, 111425.	2.0	5
5	Hydrogenolysis of glycerol to 1,3-propanediol over H-ZSM-5-supported iridium and rhenium oxide catalysts. Catalysis Today, 2022, 397-399, 356-364.	4.4	7
6	Phase speciation and surface analysis of copper phosphate on high surface area silica support by in situ XAS/XRD and DFT: Assessment for guaiacol hydrodeoxygenation. Applied Surface Science, 2022, 574, 151577.	6.1	9
7	Cooperatively enhanced coking resistance via boron nitride coating over Ni-based catalysts for dry reforming of methane. Applied Catalysis B: Environmental, 2022, 302, 120859.	20.2	61
8	Synthesis of Na2WO4-MnxOy supported on SiO2 or La2O3 as fiber catalysts by electrospinning for oxidative coupling of methane. Arabian Journal of Chemistry, 2022, 15, 103577.	4.9	8
9	Race on Highâ€loading Metal Single Atoms and Successful Preparation Strategies. ChemCatChem, 2022, 14, .	3.7	14
10	Effects of Mg, Ca, Sr, and Ba Dopants on the Performance of La ₂ O ₃ Catalysts for the Oxidative Coupling of Methane. ACS Omega, 2022, 7, 1785-1793.	3.5	9
11	Nanoporous Magnetic Carbon Nanofiber Aerogels with Embedded α-Fe/γ-Fe Core–Shell Nanoparticles for Oil Sorption and Recovery. ACS Applied Nano Materials, 2022, 5, 2885-2896.	5.0	21
12	Photo–Thermo-Dual Catalysis of Levulinic Acid and Levulinate Ester to γ-Valerolactone. ACS Catalysis, 2022, 12, 1677-1685.	11.2	21
13	Identification of Cooperative Reaction Sites in Metalâ^'Organic Framework Catalysts for High Yielding Lactic Acid Production from d â€Xylose. ChemSusChem, 2022, , .	6.8	4
14	Flexible Thermoelectric Paper and Its Thermoelectric Generator from Bacterial Cellulose/Ag ₂ Se Nanocomposites. ACS Applied Energy Materials, 2022, 5, 3489-3501.	5.1	14
15	Correlating the effect of preparation methods on the structural and magnetic properties, and reducibility of CuFe ₂ O ₄ catalysts. RSC Advances, 2022, 12, 15526-15533.	3.6	3
16	Conductive Co-triazole metal-organic framework exploited as an oxygen evolution electrocatalyst. Chemical Communications, 2022, 58, 7124-7127.	4.1	9
17	Solvent effects in integrated reaction-separation process of liquid-phase hydrogenation of furfural to furfuryl alcohol over CuAl2O4 catalysts. Catalysis Communications, 2022, 169, 106468.	3.3	11
18	Highly efficient propane dehydrogenation promoted by reverse water–gas shift reaction on Pt-Zn allov surfaces. Fuel. 2022. 325. 124833.	6.4	14

#	Article	IF	CITATIONS
19	5-Hydroxymethylfurfural production from hexose sugars using adjustable acid- and base-functionalized mesoporous SBA-15 catalysts in aqueous media. Biomass Conversion and Biorefinery, 2021, 11, 1733-1747.	4.6	14
20	Selective conversion of xylose to lactic acid over metal-based Lewis acid supported on γ-Al2O3 catalysts. Catalysis Today, 2021, 367, 205-212.	4.4	27
21	Cu-Al spinel-oxide catalysts for selective hydrogenation of furfural to furfuryl alcohol. Catalysis Today, 2021, 367, 177-188.	4.4	25
22	Sulfonated graphene oxide from petrochemical waste oil for efficient conversion of fructose into levulinic acid. Catalysis Today, 2021, 375, 197-203.	4.4	7
23	Sulfonated magnetic carbon nanoparticles from eucalyptus oil as a green and sustainable catalyst for converting fructose to 5-HMF. Catalysis Communications, 2021, 149, 106229.	3.3	16
24	Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WOx/Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions. Environmental Pollution, 2021, 272, 116029.	7.5	29
25	Step-by-step conversion of water hyacinth waste to carbon nanohorns by a combination of hydrothermal treatment, carbonization and arc in water processes. Diamond and Related Materials, 2021, 111, 108222.	3.9	3
26	Polyvinylidene Fluoride Membrane Via Vapour Induced Phase Separation for Oil/Water Emulsion Filtration. Polymers, 2021, 13, 427.	4.5	19
27	Effect of Modified Nanoclay Surface Supported Nickel Catalyst on Carbon Dioxide Reforming of Methane. Topics in Catalysis, 2021, 64, 431-445.	2.8	2
28	Insight into Fructose Dehydration over Lewis Acid α u ₂ P ₂ O ₇ Catalyst. ChemNanoMat, 2021, 7, 292-298.	2.8	6
29	Development of Polyvinylidene Fluoride Membrane via Assembly of Tannic Acid and Polyvinylpyrrolidone for Filtration of Oil/Water Emulsion. Polymers, 2021, 13, 976.	4.5	18
30	Properties of mesoporous Al-SBA-15 from one-pot hydrothermal synthesis with different aluminium precursors and catalytic performances in xylose conversion to furfural. Microporous and Mesoporous Materials, 2021, 317, 110999.	4.4	30
31	Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO3-Na2WO4/SBA-15 catalysts. Chemical Engineering Research and Design, 2021, 148, 1110-1122.	5.6	12
32	Hydrogen-free hydrogenation of furfural to furfuryl alcohol and 2-methylfuran over Ni and Co-promoted Cu/γ-Al2O3 catalysts. Fuel Processing Technology, 2021, 214, 106721.	7.2	43
33	Deoxygenations of palm oil-derived methyl esters over mono- and bimetallic NiCo catalysts. Journal of Environmental Chemical Engineering, 2021, 9, 105128.	6.7	20
34	Understanding the promoter effect of bifunctional (Pt, Ni, Cu)-MoO3-x/TiO2 catalysts for the hydrodeoxygenation of p-cresol: A combined DFT and experimental study. Applied Surface Science, 2021, 547, 149170.	6.1	15
35	Influential properties of activated carbon on dispersion of nickel phosphides and catalytic performance in hydrodeoxygenation of palm oil. Catalysis Today, 2021, 367, 153-164.	4.4	12
36	Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass. Biomass and Bioenergy, 2021, 148, 106033.	5.7	69

#	Article	IF	CITATIONS
37	Cigarette Butt Waste as Material for Phase Inverted Membrane Fabrication Used for Oil/Water Emulsion Separation. Polymers, 2021, 13, 1907.	4.5	15
38	Effect of 3d-transition metals doped in ZnO monolayers on the CO2 electrochemical reduction to valuable products: first principles study. Applied Surface Science, 2021, 550, 149380.	6.1	21
39	Effective Cu/Re promoted Ni-supported γ-Al2O3 catalyst for upgrading algae bio-crude oil produced by hydrothermal liquefaction. Fuel Processing Technology, 2021, 216, 106670.	7.2	35
40	Hard magnetic membrane based on bacterial cellulose – Barium ferrite nanocomposites. Carbohydrate Polymers, 2021, 264, 118016.	10.2	15
41	Comprehensive Mechanism of CO ₂ Electroreduction toward Ethylene and Ethanol: The Solvent Effect from Explicit Water–Cu(100) Interface Models. ACS Catalysis, 2021, 11, 9688-9701.	11.2	65
42	Surface Modification of Magnesium Ferrite Nanoparticles for Selective and Sustainable Remediation of Congo Red. ACS Applied Nano Materials, 2021, 4, 10244-10256.	5.0	13
43	High-Performance Binary Mo–Ni Catalysts for Efficient Carbon Removal during Carbon Dioxide Reforming of Methane. ACS Catalysis, 2021, 11, 12087-12095.	11.2	61
44	POSS/PDMS composite pervaporation membranes for furfural recovery. Separation and Purification Technology, 2021, 278, 119281.	7.9	5
45	Selective hydrogenolysis of furfural into fuel-additive 2-methylfuran over a rhenium-promoted copper catalyst. Sustainable Energy and Fuels, 2021, 5, 1379-1393.	4.9	13
46	Tuning BrÃ,nsted and Lewis acidity on phosphated titanium dioxides for efficient conversion of glucose to 5-hydroxymethylfurfural. RSC Advances, 2021, 11, 29196-29206.	3.6	6
47	Theoretical insight into the interaction on Ni and Cu surfaces for HMF hydrogenation: a density functional theory study. New Journal of Chemistry, 2021, 45, 21543-21552.	2.8	3
48	Tuning CuZn interfaces in metal–organic framework-derived electrocatalysts for enhancement of CO ₂ conversion to C ₂ products. Catalysis Science and Technology, 2021, 11, 8065-8078.	4.1	17
49	Rational Design of Metal-free Doped Carbon Nanohorn Catalysts for Efficient Electrosynthesis of H ₂ O ₂ from O ₂ Reduction. ACS Applied Energy Materials, 2021, 4, 12436-12447.	5.1	16
50	Highly dispersed Ni Cu nanoparticles on SBA-15 for selective hydrogenation of methyl levulinate to γ-valerolactone. International Journal of Hydrogen Energy, 2020, 45, 24054-24065.	7.1	17
51	Visible-light-driven WO3/BiOBr heterojunction photocatalysts for oxidative coupling of amines to imines: Energy band alignment and mechanistic insight. Journal of Colloid and Interface Science, 2020, 560, 213-224.	9.4	68
52	Defining nickel phosphides supported on sodium mordenite for hydrodeoxygenation of palm oil. Fuel Processing Technology, 2020, 198, 106236.	7.2	34
53	Effect of membrane properties on tilted panel performance of microalgae biomass filtration for biofuel feedstock. Renewable and Sustainable Energy Reviews, 2020, 120, 109666.	16.4	38
54	Beyond Artificial Photosynthesis: Prospects on Photobiorefinery. ChemCatChem, 2020, 12, 1873-1890.	3.7	42

#	Article	IF	CITATIONS
55	Roles of acidic sites in alumina catalysts for efficient <scp>d</scp> -xylose conversion to lactic acid. Green Chemistry, 2020, 22, 8572-8583.	9.0	26
56	Effect of Water and Glycerol in Deoxygenation of Coconut Oil over Bimetallic NiCo/SAPO-11 Nanocatalyst under N2 Atmosphere. Nanomaterials, 2020, 10, 2548.	4.1	2
57	Improving Ammonium Sorption of Bayah Natural Zeolites by Hydrothermal Method. Processes, 2020, 8, 1569.	2.8	7
58	Alternate Catalyst Support from Microwave-Assisted Activation of Coconut Tree Fiber. Key Engineering Materials, 2020, 853, 223-227.	0.4	1
59	Development of Polysulfone Membrane via Vapor-Induced Phase Separation for Oil/Water Emulsion Filtration. Polymers, 2020, 12, 2519.	4.5	20
60	Coking-resistant dry reforming of methane over BN–nanoceria interface-confined Ni catalysts. Catalysis Science and Technology, 2020, 10, 4237-4244.	4.1	37
61	Engineering zirconium-based UiO-66 for effective chemical conversion of <scp>d</scp> -xylose to lactic acid in aqueous condition. Chemical Communications, 2020, 56, 8019-8022.	4.1	33
62	Composite hollow fiber membranes of modified zeolite Y for biogas upgrading. Materials Today: Proceedings, 2020, 23, 738-744.	1.8	0
63	Solvent-Free Hydrodeoxygenation of Triglycerides to Diesel-like Hydrocarbons over Pt-Decorated MoO ₂ Catalysts. ACS Omega, 2020, 5, 6956-6966.	3.5	19
64	Palm Oil Conversion to Bio-Jet and Green Diesel Fuels over Cobalt Phosphide on Porous Carbons Derived from Palm Male Flowers. Catalysts, 2020, 10, 694.	3.5	25
65	Development of Hydrophilic PVDF Membrane Using Vapour Induced Phase Separation Method for Produced Water Treatment. Membranes, 2020, 10, 121.	3.0	59
66	Parametric Study on Microwave-Assisted Pyrolysis Combined KOH Activation of Oil Palm Male Flowers Derived Nanoporous Carbons. Materials, 2020, 13, 2876.	2.9	13
67	Effects of Matching Facet Pairs of TiO 2 on Photoelectrochemical Water Splitting Behaviors. ChemCatChem, 2020, 12, 2116-2124.	3.7	17
68	The Role of Metal Species on Aldehyde Hydrogenation over Co 13 and Ni 13 Supported on γâ€Al 2 O 3 (110) Surfaces: A Theoretical Study. ChemistrySelect, 2020, 5, 4058-4068.	1.5	6
69	Effects of colloidal TiO2 and additives on the interfacial polymerization of thin film nanocomposite membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125046.	4.7	16
70	Roles of Coordination Geometry in Single-Atom Catalysts. ACS Symposium Series, 2020, , 37-76.	0.5	4
71	Electrospun Nylon 6,6/ZIF-8 Nanofiber Membrane for Produced Water Filtration. Water (Switzerland), 2019, 11, 2111.	2.7	19
72	Catalytic Behaviors of Supported Cu, Ni, and Co Phosphide Catalysts for Deoxygenation of Oleic Acid. Catalysts, 2019, 9, 715.	3.5	10

#	Article	IF	CITATIONS
73	New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 8156-8166.	10.3	63
74	Development of A Novel Corrugated Polyvinylidene difluoride Membrane via Improved Imprinting Technique for Membrane Distillation. Polymers, 2019, 11, 865.	4.5	31
75	Advances in bio-oil production and upgrading technologies. , 2019, , 167-198.		14
76	Thermo-responsive micelles prepared from brush-like block copolymers of proline- and oligo(lactide)-functionalized norbornenes. Polymer, 2019, 177, 178-188.	3.8	4
77	Role of Sn promoter in Ni/Al ₂ O ₃ catalyst for the deoxygenation of stearic acid and coke formation: experimental and theoretical studies. Catalysis Science and Technology, 2019, 9, 3361-3372.	4.1	33
78	Simultaneous activation of copper mixed metal oxide catalysts in alcohols for gamma-valerolactone production from methyl levulinate. Applied Catalysis A: General, 2019, 579, 91-98.	4.3	17
79	In Situ X-ray Absorption Fine Structure Probing-Phase Evolution of CuFe ₂ O ₄ in Nanospace Confinement. Inorganic Chemistry, 2019, 58, 6584-6587.	4.0	8
80	Composite membranes of graphene oxide for CO ₂ /CH ₄ separation. Journal of Chemical Technology and Biotechnology, 2019, 94, 2783-2791.	3.2	23
81	Nanomaterial-incorporated nanofiltration membranes for organic solvent recovery. , 2019, , 159-181.		5
82	Editorial: Photocatalysis – From Solar Power to Sustainable Chemical Production. ChemCatChem, 2019, 11, 5838-5841.	3.7	2
83	Development of SO42â~`–ZrO2 acid catalysts admixed with a CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to dimethyl ether. Fuel, 2019, 241, 695-703.	6.4	25
84	A novel catalyst of Ni hybridized with single-walled carbon nanohorns for converting methyl levulinate to 13-valerolactone. Applied Surface Science, 2019, 474, 161-168.	6.1	12
85	Direct synthesis of dimethyl ether from CO 2 hydrogenation over novel hybrid catalysts containing a Cu ZnO ZrO 2 catalyst admixed with WO x /Al 2 O 3 catalysts: Effects of pore size of Al 2 O 3 support and W loading content. Energy Conversion and Management, 2018, 159, 20-29.	9.2	37
86	Recent Membrane Developments for CO ₂ Separation and Capture. Chemical Engineering and Technology, 2018, 41, 211-223.	1.5	127
87	Deoxygenation of oleic acid under an inert atmosphere using molybdenum oxide-based catalysts. Energy Conversion and Management, 2018, 167, 1-8.	9.2	65
88	NiAl2O4 spinel-type catalysts for deoxygenation of palm oil to green diesel. Chemical Engineering Journal, 2018, 345, 107-113.	12.7	70
89	Control of Polymorphism of Metal–Organic Frameworks Using Mixed-Metal Approach. Crystal Growth and Design, 2018, 18, 16-21.	3.0	33
90	Hydrogen storage performance of platinum supported carbon nanohorns: A DFT study of reaction mechanisms, thermodynamics, and kinetics. International Journal of Hydrogen Energy, 2018, 43, 23336-23345.	7.1	31

#	Article	IF	CITATIONS
91	Unsaturated Mn(II)-Centered [Mn(BDC)] _{<i>n</i>} Metal–Organic Framework with Strong Water Binding Ability and Its Potential for Dehydration of an Ethanol/Water Mixture. Inorganic Chemistry, 2018, 57, 13075-13078.	4.0	6
92	Coke-resistant defect-confined Ni-based nanosheet-like catalysts derived from halloysites for CO ₂ reforming of methane. Nanoscale, 2018, 10, 10528-10537.	5.6	67
93	SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy. Journal of Synchrotron Radiation, 2017, 24, 707-716.	2.4	39
94	Heterogeneous Catalysts for Advanced Biofuel Production. Green Chemistry and Sustainable Technology, 2017, , 231-254.	0.7	2
95	Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS 2 / γ -Al 2 O 3 catalysts. Energy Conversion and Management, 2017, 134, 188-196.	9.2	82
96	Alternative Hydrocarbon Biofuel Production via Hydrotreating under a Synthesis Gas Atmosphere. Energy & Fuels, 2017, 31, 12256-12262.	5.1	15
97	Synthesis of copper/carbon support catalyst from Cattail flower by calcination with hydrothermal carbonization. Materials Today: Proceedings, 2017, 4, 6153-6158.	1.8	2
98	Dehydration of D-xylose to furfural using acid-functionalized MWCNTs catalysts. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 035006.	1.5	11
99	Present Advancement in Production of Carbon Nanotubes and Their Derivatives from Industrial Waste with Promising Applications. KONA Powder and Particle Journal, 2017, 34, 24-43.	1.7	16
100	Cu-Based Spinels for Catalytic Hydrogenolysis of Glycerol to 1,2-Propanediol. Science of Advanced Materials, 2017, 9, 34-41.	0.7	5
101	Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts. Energy Conversion and Management, 2016, 118, 21-31.	9.2	140
102	Synthesis of Carbon-Supported Metal Catalysts by HTC and Electroplating Processes from Cattail Flower. Materials Science Forum, 2016, 872, 181-186.	0.3	1
103	Carbon-structure affecting catalytic carbon dioxide reforming of methane reaction over Ni-carbon composites. Journal of CO2 Utilization, 2016, 16, 245-256.	6.8	37
104	Catalytic Activity of Bimetallic Cu-Ag/MgO-SiO2 Toward the Conversion of Ethanol to 1,3-Butadiene. International Journal of Chemical Reactor Engineering, 2016, 14, 945-954.	1.1	14
105	Copper ferrite spinel oxide catalysts for palm oil methanolysis. Applied Catalysis A: General, 2016, 525, 68-75.	4.3	34
106	Synthesis and copolymerization of oligo(lactic acid) derived norbornene macromonomers with amino acid derived norbornene monomer: Formation of the 3D macroporous scaffold. Journal of Polymer Science Part A, 2015, 53, 1660-1670.	2.3	5
107	Co- and Ca-phosphate-based catalysts for the depolymerization of organosolv eucalyptus lignin. RSC Advances, 2015, 5, 45618-45621.	3.6	4
108	Effect of calcination temperature on catalytic performance of alkaline earth phosphates in hydrolysis/dehydration of glucose and cellulose. Chemical Engineering Journal, 2015, 278, 92-98.	12.7	11

#	Article	IF	CITATIONS
109	Direct synthesis of dimethyl ether from CO ₂ hydrogenation over Cu–ZnO–ZrO ₂ /SO ₄ <2â^`–ZrO ₂ hybrid catalysts: effects of sulfur-to-zirconia ratios. Catalysis Science and Technology, 2015, 5, 2347-2357.	4.1	71
110	Deoxygenation of Waste Chicken Fats to Green Diesel over Ni/Al ₂ O ₃ : Effect of Water and Free Fatty Acid Content. Energy & Fuels, 2015, 29, 833-840.	5.1	73
111	Effect of alumina hydroxylation on glycerol hydrogenolysis to 1,2-propanediol over Cu/Al ₂ O ₃ : combined experiment and DFT investigation. RSC Advances, 2015, 5, 11188-11197.	3.6	42
112	A facile and low-cost synthesis of MoS2 for hydrodeoxygenation of phenol. Catalysis Communications, 2015, 68, 31-35.	3.3	47
113	Catalytic behaviors of Ni/γ-Al ₂ O ₃ and Co/γ-Al ₂ O ₃ during the hydrodeoxygenation of palm oil. Catalysis Science and Technology, 2015, 5, 3693-3705.	4.1	96
114	Roles of monometallic catalysts in hydrodeoxygenation of palm oil to green diesel. Chemical Engineering Journal, 2015, 278, 249-258.	12.7	180
115	Mesoporous RF-Xerogels by Facile Hydrothermal Synthesis. Engineering Journal, 2015, 19, 95-104.	1.0	2
116	Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst. Bioresource Technology, 2014, 156, 329-334.	9.6	91
117	Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst. Bioresource Technology, 2014, 158, 81-90.	9.6	156
118	Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water. Chemical Engineering Journal, 2014, 258, 341-347.	12.7	60
119	Gel-combusted Ca-based catalysts for methanolysis of palm oil. Fuel, 2014, 136, 240-243.	6.4	7
120	Effect of Ni-CNTs/mesocellular silica composite catalysts on carbon dioxide reforming of methane. Applied Catalysis A: General, 2014, 475, 16-26.	4.3	48
121	Current Catalytic Processes with Hybrid Materials and Composites for Heterogeneous Catalysis. , 2013, , 79-104.		5
122	Cu–Cr, Cu–Mn, and Cu–Fe Spinel-Oxide-Type Catalysts for Reforming of Oxygenated Hydrocarbons. Journal of Physical Chemistry C, 2013, 117, 23757-23765.	3.1	35
123	Synthesis, structural characterization, and magnetic property ofÂnanostructured ferrite spinel oxides (AFe2O4, AÂ=ÂCo, Ni and Zn). Materials Chemistry and Physics, 2013, 143, 203-208.	4.0	27
124	Catalytic behavior and surface species investigation over Î ³ -Al2O3 in dimethyl ether hydrolysis. Applied Catalysis A: General, 2013, 460-461, 99-105.	4.3	13
125	Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water. Bioresource Technology, 2013, 144, 504-512.	9.6	15
126	Trend of Nanoparticle Technology in ASEAN with Emphasis on Thailand. KONA Powder and Particle Journal, 2013, 30, 181-192.	1.7	1

#	Article	IF	CITATIONS
127	Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water. Carbohydrate Research, 2012, 363, 58-61.	2.3	65
128	Copper phosphate nanostructures catalyze dehydration of fructose to 5-hydroxymethylfufural. Catalysis Communications, 2012, 29, 96-100.	3.3	41
129	Industrial eggshell wastes as the heterogeneous catalysts for microwave-assisted biodiesel production. Catalysis Today, 2012, 190, 112-116.	4.4	175
130	Microwave-induced fabrication of copper nanoparticle/carbon nanotubes hybrid material. Current Applied Physics, 2012, 12, 1575-1579.	2.4	11
131	5-Hydroxymethylfurfural production from sugars and cellulose in acid- and base-catalyzed conditions under hot compressed water. Journal of Industrial and Engineering Chemistry, 2012, 18, 1893-1901.	5.8	61
132	Sr–Mg Mixed Oxides as Biodiesel Production Catalysts. ChemCatChem, 2012, 4, 209-216.	3.7	35
133	Preparation of strontium-based fibers via electrospinning technique. Ceramics International, 2012, 38, 2633-2636.	4.8	1
134	Biodiesel production over Ca-based solid catalysts derived from industrial wastes. Fuel, 2012, 92, 239-244.	6.4	213
135	Preparation of Porous Anhydrous MgCl2 Particles by Spray Drying Process. Engineering Journal, 2012, 16, 109-114.	1.0	4
136	A Combined Experimental and Theoretical Study on the Hydrolysis of Dimethyl Ether over H-ZSM-5. Journal of Physical Chemistry C, 2011, 115, 11649-11656.	3.1	21
137	Flame sprayed tri-metallic Pt–Sn–X/Al2O3 catalysts (X = Ce, Zn, and K) for propane dehydration. Catalysis Communications, 2011, 12, 1161-1165.	3.3	10
138	The Effect of Catalyst Types and Starting Materials on Furan Production in Hot Compressed Water. Energy Procedia, 2011, 9, 515-521.	1.8	5
139	One-pot synthesis of calcium-incorporated MCM-41 as a solid base catalyst for transesterification of palm olein. Catalysis Communications, 2011, 16, 25-29.	3.3	45
140	Dimethyl Ether—Reforming Catalysts for Hydrogen Production. Catalysis Surveys From Asia, 2011, 15, 12-24.	2.6	23
141	A study of various zeolites and CuFe2O4 spinel composite catalysts in steam reforming and hydrolysis of dimethyl ether. International Journal of Hydrogen Energy, 2011, 36, 1433-1441.	7.1	34
142	Evaluation of the thermodynamic equilibrium of the autothermal reforming of dimethyl ether. International Journal of Hydrogen Energy, 2011, 36, 5865-5874.	7.1	20
143	Degradation and regeneration of copper-iron spinel and zeolite composite catalysts in steam reforming of dimethyl ether. Applied Catalysis A: General, 2010, 378, 234-242.	4.3	39
144	Catalytic behavior toward oxidative steam reforming of dimethyl ether over CuFe2O4-Al2O3 composite catalysts. Applied Catalysis A: General, 2010, 382, 21-27.	4.3	24

#	Article	IF	CITATIONS
145	Limiting mechanisms in catalytic steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2010, 97, 21-27.	20.2	43
146	Magnesia modified with strontium as a solid base catalyst for transesterification of palm olein. Chemical Engineering Journal, 2010, 162, 58-66.	12.7	63
147	Waste shells of mollusk and egg as biodiesel production catalysts. Bioresource Technology, 2010, 101, 3765-3767.	9.6	336
148	Experimental and theoretical investigations on the hydrolysis of dimethyl ether to methanol over H-ZSM-5. , 2010, , .		2
149	Effect of Reaction Temperature and Sonication Pretreatment in the Hydrothermal Process on the Morphology of Titanate Nano-Structure. Journal of Chemical Engineering of Japan, 2009, 42, S234-S237.	0.6	3
150	X-ray photoelectron spectroscopy characterization of copper–iron spinel as a catalyst for steam reforming of oxygenated hydrocarbon. Scripta Materialia, 2009, 60, 655-658.	5.2	10
151	Effect of preparation variables on morphology and anatase–brookite phase transition in sonication assisted hydrothermal reaction for synthesis of titanate nanostructures. Materials Chemistry and Physics, 2009, 118, 254-258.	4.0	31
152	Catalytic performance enhancement by heat treatment of CuFe2O4 spinel and γ-alumina composite catalysts for steam reforming of dimethyl ether. Applied Catalysis A: General, 2009, 365, 71-78.	4.3	33
153	Characteristics and catalytic properties of Pt–Sn/Al2O3 nanoparticles synthesized by one-step flame spray pyrolysis in the dehydrogenation of propane. Applied Catalysis A: General, 2009, 370, 1-6.	4.3	58
154	Crystal structure and surface species of CuFe2O4 spinel catalysts in steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2009, 92, 341-350.	20.2	82
155	Stability Enhancement in Ni-Promoted Cuâ^'Fe Spinel Catalysts for Dimethyl Ether Steam Reforming. Journal of Physical Chemistry C, 2009, 113, 18455-18458.	3.1	25
156	Effect of Thermal Treatment on Activity and Durability of CuFe ₂ O ₄ –Al ₂ O ₃ Composite Catalysts for Steam Reforming of Dimethyl Ether. Angewandte Chemie - International Edition, 2008, 47, 9314-9317.	13.8	54
157	Transmission electron microscopic observation on reduction process of copper–iron spinel catalyst for steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2008, 80, 156-167.	20.2	37
158	Catalytic hydrogen production from dimethyl ether over CuFe2O4 spinel-based composites: Hydrogen reduction and metal dopant effects. Catalysis Today, 2008, 138, 157-161.	4.4	49
159	Cu-based spinel catalysts CuB2O4 (B=Fe, Mn, Cr, Ga, Al, Fe0.75Mn0.25) for steam reforming of dimethyl ether. Applied Catalysis A: General, 2008, 341, 139-145.	4.3	115
160	Deactivation and regeneration behaviors of copper spinel–alumina composite catalysts in steam reforming of dimethyl ether. Journal of Catalysis, 2008, 256, 37-44.	6.2	70
161	Review of Recent Research on Nanoparticle Production in Thailand. Advanced Powder Technology, 2008, 19, 443-457.	4.1	8
162	Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina. Applied Catalysis B: Environmental, 2007, 74, 144-151.	20.2	166

#	Article	IF	CITATIONS
163	A comparative study of solid acids in hydrolysis and steam reforming of dimethyl ether. Applied Catalysis A: General, 2007, 333, 114-121.	4.3	80
164	Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether. Journal of Power Sources, 2007, 164, 73-79.	7.8	61
165	Modeling of Experimental Treatment of Acetaldehyde-Laden Air and Phenol-Containing Water Using Corona Discharge Technique. Environmental Science & Technology, 2006, 40, 1622-1628.	10.0	25
166	Influence of solid–acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production. Applied Catalysis A: General, 2006, 304, 40-48.	4.3	104
167	Thermodynamic evaluation of methanol steam reforming for hydrogen production. Journal of Power Sources, 2006, 161, 87-94.	7.8	134
168	Removal of acetaldehyde in air using a wetted-wall corona discharge reactor. Chemical Engineering Journal, 2004, 103, 115-122.	12.7	25
169	Simultaneous Gas-Water Purification by a Wetted-Wall Corona Discharge Reactor: Decomposition of Aqueous Phenol and Gaseous Acetaldehyde. Journal of Chemical Engineering of Japan, 2004, 37, 1373-1378.	0.6	4