Oded Yarden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4656449/publications.pdf

Version: 2024-02-01

53794 43889 9,135 134 45 91 citations h-index g-index papers 138 138 138 8848 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sequencing and Analysis of the Entire Genome of the Mycoparasitic Bioeffector Fungus Trichoderma asperelloides Strain T 203 (Hypocreales). Microbiology Resource Announcements, 2022, 11, e0099521.	0.6	4
2	Secondary Metabolism Gene Clusters Exhibit Increasingly Dynamic and Differential Expression during Asexual Growth, Conidiation, and Sexual Development in Neurospora crassa. MSystems, 2022, 7, .	3.8	2
3	The GUL-1 Protein Binds Multiple RNAs Involved in Cell Wall Remodeling and Affects the MAK-1 Pathway in Neurospora crassa. Frontiers in Fungal Biology, 2021, 2, .	2.0	4
4	The Culturable Mycobiome of Mesophotic Agelas oroides: Constituents and Changes Following Sponge Transplantation to Shallow Water. Journal of Fungi (Basel, Switzerland), 2021, 7, 567.	3.5	3
5	Seasonal Variations in the Culturable Mycobiome of Acropora loripes along a Depth Gradient. Microorganisms, 2020, 8, 1139.	3.6	4
6	The phoma-like dilemma. Studies in Mycology, 2020, 96, 309-396.	7.2	87
7	Seeking the Roles for Fungal Small-Secreted Proteins in Affecting Saprophytic Lifestyles. Frontiers in Microbiology, 2020, 11, 455.	3.5	38
8	Growing a circular economy with fungal biotechnology: a white paper. Fungal Biology and Biotechnology, 2020, 7, 5.	5.1	228
9	Identification and manipulation of Neurospora crassa genes involved in sensitivity to furfural. Biotechnology for Biofuels, 2019, 12, 210.	6.2	14
10	Manipulating the Expression of Small Secreted Protein 1 (Ssp1) Alters Patterns of Development and Metabolism in the White-Rot Fungus <i>Pleurotus ostreatus</i> Microbiology, 2019, 85, .	3.1	10
11	Fungi in the Marine Environment: Open Questions and Unsolved Problems. MBio, 2019, 10, .	4.1	200
12	Transcriptional profiling and localization of GUL-1, a COT-1 pathway component, in Neurospora crassa. Fungal Genetics and Biology, 2019, 126, 1-11.	2.1	11
13	Metabolism and Development during Conidial Germination in Response to a Carbon-Nitrogen-Rich Synthetic or a Natural Source of Nutrition in <i>Neurospora crassa</i> . MBio, 2019, 10, .	4.1	21
14	Altering <i>Neurospora crassa</i> MOB2A exposes its functions in development and affects its interaction with the NDR kinase COT1. Molecular Microbiology, 2018, 108, 641-660.	2.5	3
15	The diversity of <i>Trichoderma</i> species from soil in South Africa, with five new additions. Mycologia, 2018, 110, 559-583.	1.9	42
16	Effects of cre1 modification in theÂwhite-rot fungus Pleurotus ostreatus PC9: altering substrate preference during biological pretreatment. Biotechnology for Biofuels, 2018, 11, 212.	6.2	50
17	Abnormal Ergosterol Biosynthesis Activates Transcriptional Responses to Antifungal Azoles. Frontiers in Microbiology, 2018, 9, 9.	3.5	72
18	Regulation of Neurospora crassa cell wall remodeling via the cot-1 pathway is mediated by gul-1. Current Genetics, 2017, 63, 145-159.	1.7	27

#	Article	IF	CITATIONS
19	Irradiation by blue light in the presence of a photoacid confers changes to colony morphology of the plant pathogen Colletotrichum gloeosporioides. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 1-9.	3.8	3
20	A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatus. Scientific Reports, 2017, 7, 14553.	3.3	35
21	The Neurospora crassa PP2A Regulatory Subunits RGB1 and B56 Are Required for Proper Growth and Development and Interact with the NDR Kinase COT1. Frontiers in Microbiology, 2017, 8, 1694.	3.5	9
22	A recombinant fungal compound induces anti-proliferative and pro-apoptotic effects on colon cancer cells. Oncotarget, 2017, 8, 28854-28864.	1.8	18
23	Limits of Versatility of Versatile Peroxidase. Applied and Environmental Microbiology, 2016, 82, 4070-4080.	3.1	35
24	Model fungi: Engines of scientific insight. Fungal Biology Reviews, 2016, 30, 33-35.	4.7	7
25	Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: Outdoor exposure study supported by laboratory experiments. Science of the Total Environment, 2016, 541, 365-371.	8.0	50
26	Detoxification of 5-hydroxymethylfurfural by the Pleurotus ostreatus lignolytic enzymes aryl alcohol oxidase and dehydrogenase. Biotechnology for Biofuels, 2015, 8, 63.	6.2	70
27	The ligninolytic peroxidases in the genus Pleurotus: divergence in activities, expression, and potential applications. Applied Microbiology and Biotechnology, 2015, 99, 1025-1038.	3.6	86
28	Pathogenic attributes of Sclerotinia sclerotiorum: Switching from a biotrophic to necrotrophic lifestyle. Plant Science, 2015, 233, 53-60.	3.6	250
29	Diversity of fungi isolated from three temperate ascidians. Symbiosis, 2015, 66, 99-106.	2.3	16
30	Differences in the responses of melon accessions to fusarium root and stem rot and their colonization by <i><scp>F</scp>usarium oxysporum</i> f. sp. <i>radicisâ€cucumerinum</i> Plant Pathology, 2015, 64, 655-663.	2.4	25
31	Sensitivity of Neurospora crassa to a Marine-Derived Aspergillus tubingensis Anhydride Exhibiting Antifungal Activity That Is Mediated by the MAS1 Protein. Marine Drugs, 2014, 12, 4713-4731.	4.6	30
32	Fungal association with sessile marine invertebrates. Frontiers in Microbiology, 2014, 5, 228.	3.5	83
33	Inactivation of a <i><scp>P</scp>leurotus ostreatus</i> versatile peroxidaseâ€encoding gene (<i>mnp2</i>) results in reduced lignin degradation. Environmental Microbiology, 2014, 16, 265-277.	3.8	37
34	Mn2+-deficiency reveals a key role for the Pleurotus ostreatus versatile peroxidase (VP4) in oxidation of aromatic compounds. Applied Microbiology and Biotechnology, 2014, 98, 6795-6804.	3.6	23
35	Sclerotinia sclerotiorum catalase SCAT1 affects oxidative stress tolerance, regulates ergosterol levels and controls pathogenic development. Physiological and Molecular Plant Pathology, 2014, 85, 34-41.	2.5	40
36	Changes in atmospheric <scp>CO₂</scp> influence the allergenicity of <i><scp>A</scp>spergillus fumigatus</i> . Global Change Biology, 2013, 19, 2381-2388.	9.5	24

#	Article	IF	Citations
37	The <scp>N</scp> â€terminal region of the <i><scp>N</scp>eurospora</i> â€ <scp>NDR</scp> kinase <scp>COT1</scp> regulates morphology via its interactions with <scp>MOB2A</scp> / <scp>B</scp> . Molecular Microbiology, 2013, 90, 383-399.	2.5	20
38	Redundancy among Manganese Peroxidases in Pleurotus ostreatus. Applied and Environmental Microbiology, 2013, 79, 2405-2415.	3.1	48
39	Eight New Peptaibols from Sponge-Associated Trichoderma atroviride. Marine Drugs, 2013, 11, 4937-4960.	4.6	33
40	Neurospora crassa Protein Arginine Methyl Transferases Are Involved in Growth and Development and Interact with the NDR Kinase COT1. PLoS ONE, 2013, 8, e80756.	2.5	9
41	Annual distribution of allergenic fungal spores in atmospheric particulate matter in the Eastern Mediterranean; a comparative study between ergosterol and quantitative PCR analysis. Atmospheric Chemistry and Physics, 2012, 12, 2681-2690.	4.9	52
42	Predominance of a Versatile-Peroxidase-Encoding Gene, <i>mnp4</i> , as Demonstrated by Gene Replacement via a Gene Targeting System for Pleurotus ostreatus. Applied and Environmental Microbiology, 2012, 78, 5341-5352.	3.1	87
43	Comparative genomics of <i>Ceriporiopsis subvermispora</i> and <i>Phanerochaete chrysosporium</i> provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5458-5463.	7.1	259
44	Release of Pleurotus ostreatus Versatile-Peroxidase from Mn2+ Repression Enhances Anthropogenic and Natural Substrate Degradation. PLoS ONE, 2012, 7, e52446.	2.5	35
45	Sensitive Detection and Identification of DNA and RNA Using a Patterned Capillary Tube. Analytical Chemistry, 2011, 83, 9418-9423.	6.5	6
46	Neurosporaside, a Tetraglycosylated Sphingolipid from <i>Neurospora crassa</i> . Journal of Natural Products, 2011, 74, 554-558.	3.0	9
47	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
48	Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biology, 2011, 115, 446-474.	2.5	124
49	The transcription factor SNT2 is involved in fungal respiration and reactive oxidative stress in Fusarium oxysporum and Neurospora crassa. Physiological and Molecular Plant Pathology, 2011, 76, 137-143.	2.5	6
50	Inactivation of Snt2, a BAH/PHDâ€containing transcription factor, impairs pathogenicity and increases autophagosome abundance in <i>Fusarium oxysporum</i> . Molecular Plant Pathology, 2011, 12, 449-461.	4.2	42
51	Novel terpenoids of the fungus Aspergillus insuetus isolated from the Mediterranean sponge Psammocinia sp. collected along the coast of Israel. Bioorganic and Medicinal Chemistry, 2011, 19, 6587-6593.	3.0	63
52	RNAi as a potential tool for biotechnological applications in fungi. Applied Microbiology and Biotechnology, 2011, 89, 501-512.	3.6	61
53	Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture. Applied and Environmental Microbiology, 2011, 77, 5100-5109.	3.1	109
54	Stabilization of the $\hat{l}\pm2$ Isoform of Na,K-ATPase by Mutations in a Phospholipid Binding Pocket. Journal of Biological Chemistry, 2011, 286, 42888-42899.	3.4	42

#	Article	IF	CITATIONS
55	Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Diversity, 2010, 42, 17-26.	12.3	112
56	<i>Pleurotus ostreatus</i> manganeseâ€dependent peroxidase silencing impairs decolourization of Orange II. Microbial Biotechnology, 2010, 3, 93-106.	4.2	48
57	The NDR Kinase DBF-2 Is Involved in Regulation of Mitosis, Conidial Development, and Glycogen Metabolism in Neurospora crassa. Eukaryotic Cell, 2010, 9, 502-513.	3.4	22
58	Gene Silencing for Functional Analysis: Assessing RNAi as a Tool for Manipulation of Gene Expression. Methods in Molecular Biology, 2010, 638, 77-100.	0.9	14
59	Two NDR kinase–MOB complexes function as distinct modules during septum formation and tip extension in <i>Neurospora crassa</i> . Molecular Microbiology, 2009, 74, 707-723.	2.5	56
60	Cell elongation and branching are regulated by differential phosphorylation states of the nuclear Dbf2â€related kinase COT1 in <i>Neurospora crassa</i> . Molecular Microbiology, 2009, 74, 974-989.	2.5	33
61	Presence of <i>Aspergillus sydowii</i> , a pathogen of gorgonian sea fans in the marine sponge <i>Spongia obscura</i> . ISME Journal, 2009, 3, 752-755.	9.8	63
62	Gene silencing of mannose 6â€phosphate reductase in the parasitic weed <i>Orobanche aegyptiaca</i> through the production of homologous dsRNA sequences in the host plant. Plant Biotechnology Journal, 2009, 7, 487-498.	8.3	104
63	Synthesis and Antifungal Activity of \hat{l}^2 -Trifluoroalkyl Aminovinyl Ketone Derivatives. Journal of Agricultural and Food Chemistry, 2009, 57, 8303-8307.	5.2	9
64	Differential protein expression in <i>Colletotrichum acutatum</i> : changes associated with reactive oxygen species and nitrogen starvation implicated in pathogenicity on strawberry. Molecular Plant Pathology, 2008, 9, 171-190.	4.2	46
65	Efficient gene replacement and direct hyphal transformation in <i>Sclerotinia sclerotiorum</i> Molecular Plant Pathology, 2008, 9, 719-725.	4.2	13
66	The Nuclear Dbf2-Related Kinase COT1 and the Mitogen-Activated Protein Kinases MAK1 and MAK2 Genetically Interact to Regulate Filamentous Growth, Hyphal Fusion and Sexual Development in Neurospora crassa. Genetics, 2008, 179, 1313-1325.	2.9	91
67	Carbon source affects PKA-dependent polarity of Neurospora crassa in a CRE-1-dependent and independent manner. Fungal Genetics and Biology, 2008, 45, 103-116.	2.1	54
68	The Neurospora crassa colonial temperature sensitive 2, 4 and 5 (cot-2, cot-4 and cot-5) genes encode regulatory and structural proteins required for hyphal elongation and branching. Fungal Genetics Reports, 2008, 55, 32-36.	0.6	6
69	Increased Prevalence of Ubiquitous Ascomycetes in an Acropoid Coral (Acropora formosa) Exhibiting Symptoms of Brown Band Syndrome and Skeletal Eroding Band Disease. Applied and Environmental Microbiology, 2007, 73, 2755-2757.	3.1	49
70	Type 2A Phosphoprotein Phosphatase Is Required for Asexual Development and Pathogenesis of <i>Sclerotinia sclerotiorum</i> . Molecular Plant-Microbe Interactions, 2007, 20, 944-954.	2.6	90
71	Trifluralin herbicide-induced resistance of melon to fusarium wilt involves expression of stress- and defence-related genes. Molecular Plant Pathology, 2007, 8, 9-22.	4.2	11
72	Migration Cues Induce Chromatin Alterations. Traffic, 2007, 8, 1521-1529.	2.7	49

#	Article	lF	Citations
73	Model systems for studying the biology of filamentous fungi: Rumors of their death should be postponed. Phytoparasitica, 2007, 35, 111-115.	1.2	1
74	Calcineurin Is Required for Sclerotial Development and Pathogenicity of Sclerotinia sclerotiorum in an Oxalic Acid-Independent Manner. Molecular Plant-Microbe Interactions, 2006, 19, 682-693.	2.6	104
75	A defect in nir1, a nirA-like transcription factor, confers morphological abnormalities and loss of pathogenicity in Colletotrichum acutatum. Molecular Plant Pathology, 2006, 7, 341-354.	4.2	14
76	The global nitrogen regulator, FNR1, regulates fungal nutrition-genes and fitness during Fusarium oxysporum pathogenesis. Molecular Plant Pathology, 2006, 7, 485-497.	4.2	71
77	The STE20/Germinal Center Kinase POD6 Interacts with the NDR Kinase COT1 and Is Involved in Polar Tip Extension inNeurospora crassa. Molecular Biology of the Cell, 2006, 17, 4080-4092.	2.1	65
78	Analysis of Quantitative Interactions between Two Species of Arbuscular Mycorrhizal Fungi, Glomus mosseae and G. intraradices, by Real-Time PCR. Applied and Environmental Microbiology, 2006, 72, 4192-4199.	3.1	114
79	Changes in Protein Kinase A Activity Accompany Sclerotial Development in Sclerotinia sclerotiorum. Phytopathology, 2005, 95, 397-404.	2.2	27
80	Microwave-assisted extraction of bioactive saponins from chickpea (Cicer arietinum L). Journal of the Science of Food and Agriculture, 2005, 85, 406-412.	3.5	114
81	Impaired purine biosynthesis affects pathogenicity of Fusarium oxysporum f. sp. melonis. European Journal of Plant Pathology, 2005, 112, 293-297.	1.7	8
82	The COT1 homologue CPCOT1 regulates polar growth and branching and is essential for pathogenicity in Claviceps purpurea. Fungal Genetics and Biology, 2005, 42, 107-118.	2.1	29
83	BioCloneDB. Applied Bioinformatics, 2005, 4, 277-280.	1.6	2
84	Pandangolide 1a, a Metabolite of the Sponge-Associated FungusCladosporiumsp., and the Absolute Stereochemistry of Pandangolide 1 andiso-Cladospolide B. Journal of Natural Products, 2005, 68, 1350-1353.	3.0	57
85	Distinct roles for PP1 and PP2A in the Neurospora circadian clock. Genes and Development, 2004, 18, 255-260.	5.9	111
86	Quantification of the arbuscular mycorrhizal fungus Glomus intraradices in host tissue using realâ€time polymerase chain reaction. New Phytologist, 2004, 161, 877-885.	7.3	74
87	Lessons from the Genome Sequence of <i>Neurospora crassa </i> : Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiology and Molecular Biology Reviews, 2004, 68, 1-108.	6.6	572
88	A comparative genomic analysis of the calcium signaling machinery in Neurospora crassa, Magnaporthe grisea, and Saccharomyces cerevisiae. Fungal Genetics and Biology, 2004, 41, 827-841.	2.1	128
89	Clinical and Epidemiological Aspects of Infections Caused by Fusarium Species: a Collaborative Study from Israel. Journal of Clinical Microbiology, 2004, 42, 3456-3461.	3.9	38
90	Development of a Robust Screening Method for Pathogenicity of Colletotrichum spp. on Strawberry Seedlings Enabling Forward Genetic Studies. Plant Disease, 2004, 88, 845-851.	1.4	14

#	Article	IF	Citations
91	MAPK Regulation of Sclerotial Development in Sclerotinia sclerotiorum Is Linked with pH and cAMP Sensing. Molecular Plant-Microbe Interactions, 2004, 17, 404-413.	2.6	100
92	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	27.8	1,528
93	Expression of protein phosphatase 1 during the asexual development of Neurospora crassa. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 134, 161-170.	1.6	6
94	Environmental Suppression of Neurospora crassa cot-1 Hyperbranching: a Link between COT1 Kinase and Stress Sensing. Eukaryotic Cell, 2003, 2, 699-707.	3.4	42
95	Fungal Biology and Agriculture: Revisiting the Field. Molecular Plant-Microbe Interactions, 2003, 16, 859-866.	2.6	12
96	Lignocellulose Affects Mn2+ Regulation of Peroxidase Transcript Levels in Solid-State Cultures of Pleurotus ostreatus. Applied and Environmental Microbiology, 2002, 68, 3156-3158.	3.1	30
97	Mn ²⁺ Alters Peroxidase Profiles and Lignin Degradation by the White-Rot Fungus Pleurotus ostreatus Under Different Nutritional and Growth Conditions. Applied Biochemistry and Biotechnology, 2002, 102-103, 415-430.	2.9	25
98	The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta, 2001, 212, 323-331.	3.2	197
99	Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environmental Microbiology, 2001, 3, 312-322.	3.8	57
100	Isolation and Characterization of a Cold-Tolerant Strain of Fusarium proliferatum, a Biocontrol Agent of Grape Downy Mildew. Phytopathology, 2001, 91, 1062-1068.	2.2	32
101	The <i>Neurospora crassa chs3</i> gene encodes an essential class I chitin synthase. Mycologia, 2000, 92, 65-73.	1.9	27
102	The Neurospora crassa chs3 Gene Encodes an Essential Class I Chitin Synthase. Mycologia, 2000, 92, 65.	1.9	19
103	Cellular Distribution of COT1 Kinase in Neurospora crassa. Fungal Genetics and Biology, 2000, 30, 63-70.	2.1	25
104	The B regulatory subunit of protein phosphatase 2A is required for completion of macroconidiation and other developmental processes in Neurospora crassa. Molecular Microbiology, 1999, 31, 197-209.	2.5	37
105	Serine/Threonine Protein Kinases and Phosphatases in Filamentious Fungi. Fungal Genetics and Biology, 1999, 26, 99-117.	2.1	144
106	A Mutation within the Catalytic Domain of COT1 Kinase Confers Changes in the Presence of Two COT1 Isoforms and in Ser/Thr Protein Kinase and Phosphatase Activities in Neurospora crassa. Fungal Genetics and Biology, 1999, 27, 264-274.	2.1	28
107	The Mycoparasite Ampelomyces quisqualis Expresses exgA Encoding an exo- \hat{l}^2 -1,3-Glucanase in Culture and During Mycoparasitism. Phytopathology, 1999, 89, 631-638.	2.2	43
108	Genetic and Environmental Influence on Development of the Filamentous Fungus Neurospora crassa., 1999,, 67-82.		0

#	Article	IF	Citations
109	Detection of a protein phosphatase 2A holoenzyme in Neurospora crassa Fungal Genetics Reports, 1999, 46, 31.	0.6	6
110	pzl-1 encodes a novel protein phosphatase-Z-like Ser/Thr protein phosphatase in Neurospora crassa. BBA - Proteins and Proteomics, 1998, 1388, 260-266.	2.1	10
111	Protein phosphatase 2A is involved in hyphal growth of Neurospora crassa. Molecular Genetics and Genomics, 1998, 259, 523-531.	2.4	40
112	Diversification of diseases affecting herb crops in Israel accompanies the increase in Herb crop production. Phytoparasitica, 1998, 26, 53-58.	1,2	30
113	Photoregulation ofcot-1,a Kinase-Encoding Gene Involved in Hyphal Growth inNeurospora crassa. Fungal Genetics and Biology, 1998, 23, 300-310.	2.1	36
114	ppt-1, a Neurospora crassa PPT/PP5 subfamily serine/threonine protein phosphatase. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1353, 18-22.	2.4	20
115	Impairment of calcineurin function in Neurospora crassa reveals its essential role in hyphal growth, morphology and maintenance of the apical Ca2+ gradient. Molecular Genetics and Genomics, 1997, 256, 104-114.	2.4	115
116	The chsA gene, encoding a class-I chitin synthase from Ampelomyces quisqualis. Gene, 1996, 168, 99-102.	2.2	9
117	chs-4, a class IV chitin synthase gene fromNeurospora crassa. Molecular Genetics and Genomics, 1996, 250, 214-222.	2.4	53
118	Immunological Detection of Proteins Similar to Bacterial Proteases in Higher Plant Chloroplasts. FEBS Journal, 1996, 236, 932-936.	0.2	34
119	Changes in chitin deposition accompany runner hypha branching of Gaeumannomyces graminis in culture. Mycological Research, 1996, 100, 444-448.	2.5	1
120	Inactivation of a single type-2A phosphoprotein phosphatase is lethal in Neurospora crassa. Current Genetics, 1995, 28, 458-466.	1.7	27
121	Polyhydroxyalkanoate analysis inAzospirillum brasilense. Canadian Journal of Microbiology, 1995, 41, 73-76.	1.7	26
122	Reduced fluridone efficacy in soil: A possible case for reversible microbial inactivation. Soil Biology and Biochemistry, 1994, 26, 689-694.	8.8	4
123	Mutations Leading to Substitutions at Amino Acids 198 and 200 of Beta-Tubulin that Correlate with Benomyl-Resistance Phenotypes of Field Strains ofBotrytis cinerea. Phytopathology, 1993, 83, 1478.	2.2	172
124	A dominant selectable marker that is meiotically stable in Neurospora crassa: the amdS gene of Aspergillus nidulans. Molecular Genetics and Genomics, 1992, 236, 121-124.	2.4	13
125	Stability of Trichoderma harzianumamdS transformants in soil and rhizosphere. Soil Biology and Biochemistry, 1991, 23, 1043-1046.	8.8	15
126	Involvement of fungi and bacteria in enhanced and nonenhanced biodegradation of carbendazim and other benzimidazole compounds in soil. Canadian Journal of Microbiology, 1990, 36, 15-23.	1.7	30

#	Article	IF	CITATION
127	Solarization enhances dissipation of carbendazim (MBC) in soil. Soil Biology and Biochemistry, 1989, 21, 857-861.	8.8	11
128	Cross-suppression of accelerated degradation of carbendazim (MBC) by soil exhibiting reduced fluridone efficacy. Soil Biology and Biochemistry, 1989, 21, 863-864.	8.8	1
129	Accelerated microbial degradation of methyl benzimidazol-2-ylcarbamate in soil and its control. Soil Biology and Biochemistry, 1987, 19, 735-739.	8.8	27
130	Paclobutrazol and other plant growth-retarding chemicals increase resistance of melon seedlings to fusarium wilt. Plant Pathology, 1987, 36, 558-564.	2.4	25
131	A rapid bioassay for the determination of carbendazim residues in soil. Plant Pathology, 1985, 34, 69-74.	2.4	11
132	Persistence of Terbutryn and Atrazine in Soil as Affected by Soil Disinfestation and Fungicides. Weed Science, 1985, 33, 457-461.	1.5	30
133	Delayed and Enhanced Degradation of Benomyl and Carbendazim in Disinfested and Fungicide-Treated Soils. Phytopathology, 1985, 75, 763.	2.2	26
134	The Cell Wall of Filamentous Fungi. , 0, , 224-237.		16