List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4656096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural evolution of a magnetic flux rope associated with a major flare in the solar active region 12205. Astronomy and Astrophysics, 2022, 659, A25.	5.1	4
2	Crossâ€Terminator Variations of the Photoelectron Energy Distribution in the Martian Ionosphere. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	1
3	The Rotation of Magnetic Flux Ropes Formed during Solar Eruption. Astrophysical Journal Letters, 2022, 927, L14.	8.3	9
4	Coherence of Ion Cyclotron Resonance in Damped Ion Cyclotron Waves in Space Plasmas. Astrophysical Journal, 2022, 928, 36.	4.5	5
5	The solar wind plasma upstream of Mars observed by Tianwen-1: Comparison with Mars Express and MAVEN. Science China Earth Sciences, 2022, 65, 759-768.	5.2	10
6	An Automatic Identification Method for the Photoelectron Boundary at Mars. Astronomical Journal, 2022, 163, 186.	4.7	3
7	lfnar gene variants influence gut microbial production of palmitoleic acid and host immune responses to tuberculosis. Nature Metabolism, 2022, 4, 359-373.	11.9	11
8	Modeling the CO2+ Ultraviolet Doublet Emission from Mars with a Multi-Instrument MAVEN Data Set. Remote Sensing, 2022, 14, 1705.	4.0	1
9	Empirical Models of Ion Density Distribution in the Dayside Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	4
10	Species-dependent solar rotation effects on the Martian ionosphere. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1293-1299.	4.4	3
11	Gravity Waves in Different Atmospheric Layers During Martian Dust Storms. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	6
12	Earth-like thermal and dynamical coupling processes in the Martian climate system. Earth-Science Reviews, 2022, 229, 104023.	9.1	18
13	Photoelectron Butterfly Pitch-angle Distributions in the Martian lonosphere Based on MAVEN Observations. Astrophysical Journal, 2022, 929, 126.	4.5	0
14	Targeting Selective Autophagy as a Therapeutic Strategy for Viral Infectious Diseases. Frontiers in Microbiology, 2022, 13, 889835.	3.5	9
15	Diurnal Variations of Water Ice in the Martian Atmosphere Observed by Mars Climate Sounder. Remote Sensing, 2022, 14, 2235.	4.0	1
16	Windâ€Enhanced Hydrogen Escape on Mars. Geophysical Research Letters, 2022, 49, .	4.0	3
17	The Impact and Mechanism of the Magnetic Inclination Angle on O ⁺ Escape from Mars. Astrophysical Journal, 2022, 931, 30.	4.5	9
18	Gravity Waves in Titan's Atmosphere: A Comparison Between Linearized Wave Model Calculations and HASI Observations. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3

Јим Сиг

#	Article	IF	CITATIONS
19	Magnetospheric Multiscale Mission Observations of Lower-hybrid Drift Waves in Terrestrial Magnetotail Reconnection with Moderate Guide Field and Asymmetric Plasma Density. Astrophysical Journal, 2022, 933, 208.	4.5	4
20	Hydrogen and helium escape on Venus via energy transfer from hot oxygen atoms. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2394-2402.	4.4	5
21	Speciesâ€dependent Response of the Martian Ionosphere to the 2018 Global Dust Event. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006679.	3.6	14
22	Ejecta From the Orientale Basin at the Chang'Eâ€4 Landing Site. Geophysical Research Letters, 2021, 48, e2020GL090935.	4.0	21
23	Effects of Ion Slippage in Earth's Ionosphere and the Plasma Sheet. Geophysical Research Letters, 2021, 48, e2020GL091494.	4.0	1
24	In Situ Heating of the Nightside Martian Upper Atmosphere and Ionosphere: The Role of Solar Wind Electron Precipitation. Astrophysical Journal, 2021, 909, 108.	4.5	3
25	Self-Secondaries Formed by Cold Spot Craters on the Moon. Remote Sensing, 2021, 13, 1087.	4.0	1
26	The configuration and failed eruption of a complex magnetic flux rope above a <i>δ</i> sunspot region. Astronomy and Astrophysics, 2021, 648, A106.	5.1	4
27	A Comparative Study on the Distributions of Incoherent and Coherent Plasmaspheric Hiss. Geophysical Research Letters, 2021, 48, e2021GL092902.	4.0	4
28	Hyperbolic reflectors determined from peak echoes of ground penetrating radar. Icarus, 2021, 358, 114280.	2.5	14
29	Abnormal Phase Structure of Thermal Tides During Major Dust Storms on Mars: Implications for the Excitation Source of Highâ€altitude Water Ice Clouds. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006758.	3.6	6
30	On the structure of the Enceladus plume. Monthly Notices of the Royal Astronomical Society, 2021, 504, 6216-6222.	4.4	0
31	The Ionosphere at Middle and Low Latitudes Under Geomagnetic Quiet Time of December 2019. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028964.	2.4	8
32	Recent Dark Pyroclastic Deposits on Mercury. Geophysical Research Letters, 2021, 48, e2021GL092532.	4.0	9
33	A fundamental mechanism of solar eruption initiation. Nature Astronomy, 2021, 5, 1126-1138.	10.1	79
34	Development of Multiple Injection Channels During a Sawtooth Substorm Event. Geophysical Research Letters, 2021, 48, e2021GL094097.	4.0	0
35	Rock Fragments in Shallow Lunar Regolith: Constraints by the Lunar Penetrating Radar Onboard the Chang'Eâ€4 Mission. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006917.	3.6	13
36	Large Eddy Simulations of the Dusty Martian Convective Boundary Layer With MarsWRF. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006752.	3.6	17

#	Article	IF	CITATIONS
37	Structure and Evolution of an Inter–Active Region Large-scale Magnetic Flux Rope. Astrophysical Journal, 2021, 906, 45.	4.5	6
38	A Survey of Photoelectrons on the Nightside of Mars. Geophysical Research Letters, 2021, 48, e2020GL089998.	4.0	10
39	Variation of Magnetic Flux Ropes through Major Solar Flares. Astrophysical Journal Letters, 2021, 907, L23.	8.3	5
40	Shortâ€Term and Globalâ€Wide Effusive Volcanism on Mercury Around 3.7ÂGa. Geophysical Research Letters, 2021, 48, e2021GL094503.	4.0	9
41	MAVEN Observations of Magnetic Reconnection at Martian Induced Magnetopause. Geophysical Research Letters, 2021, 48, e2021GL095426.	4.0	17
42	A Magnetospheric Driver of Westward Traveling Surge: Plasmaâ€ S heet Bubble. Geophysical Research Letters, 2021, 48, e2021GL095539.	4.0	1
43	High-Latitude Cold Ion Outflow Inferred From the Cluster Wake Observations in the Magnetotail Lobes and the Polar Cap Region. Frontiers in Physics, 2021, 9, .	2.1	1
44	Magnetospheric Source and Electric Current System Associated With Intense SAIDs. Geophysical Research Letters, 2021, 48, e2021GL093253.	4.0	7
45	Effects of the Solar Wind Dynamic Pressure on the Martian Topside Ion Distribution: Implications on the Variability of Bulk Ion Outflow. Astrophysical Journal, 2021, 922, 231.	4.5	4
46	Interplanetary Coronal Mass Ejections from MAVEN Orbital Observations at Mars. Astrophysical Journal, 2021, 923, 4.	4.5	7
47	Compositional Variation of the Dayside Martian Ionosphere: Inference from Photochemical Equilibrium Computations. Astrophysical Journal, 2021, 923, 29.	4.5	13
48	Neutral Heating Efficiency in the Dayside Martian Upper Atmosphere. Astronomical Journal, 2020, 159, 39.	4.7	12
49	Identify potent SARS-CoV-2 main protease inhibitors via accelerated free energy perturbation-based virtual screening of existing drugs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27381-27387.	7.1	174
50	Precipitation Loss of Radiation Belt Electrons by Twoâ€Band Plasmaspheric Hiss Waves. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028157.	2.4	5
51	Spatially Quasi-periodic Finger-like Auroras during Substorms. Astrophysical Journal, 2020, 897, 149.	4.5	3
52	Electron Diffusion by Coexisting Plasmaspheric Hiss and Chorus Waves: Multisatellite Observations and Simulations. Geophysical Research Letters, 2020, 47, e2020GL088753.	4.0	15
53	Statistical Study on Locally Generated Highâ€Frequency Plasmaspheric Hiss and Its Effect on Suprathermal Electrons: Van Allen Probes Observation and Quasiâ€linear Simulation. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028526.	2.4	12
54	Solar and Magnetic Control of Minor Ion Peaks in the Dayside Martian Ionosphere. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028254.	2.4	7

#	Article	IF	CITATIONS
55	Persistence of the Longâ€Duration Daytime TEC Enhancements at Different Longitudinal Sectors During the August 2018 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028238.	2.4	15
56	Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance. Earth and Planetary Physics, 2020, 4, 1-6.	1.1	8
57	Lost Volatiles During the Formation of Hollows on Mercury. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006559.	3.6	9
58	Temperature Variability in Titan's Upper Atmosphere: The Role of Wave Dissipation. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006163.	3.6	5
59	Fine debris flows formed by the Orientale basin. Earth and Planetary Physics, 2020, 4, 1-11.	1.1	3
60	Photoelectrons as a Tracer of Planetary Atmospheric Composition: Application to CO on Mars. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006441.	3.6	13
61	Dayside nitrogen and carbon escape on Titan: the role of exothermic chemistry. Astronomy and Astrophysics, 2020, 633, A8.	5.1	7
62	The Polar Wind Modulated by the Spatial Inhomogeneity of the Strength of the Earth's Magnetic Field. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027802.	2.4	6
63	Abnormal Dawn–Dusk Asymmetry of Protonated Ions in the Martian Ionosphere. Astrophysical Journal Letters, 2020, 895, L43.	8.3	11
64	The minimum confidence limit for diameters in crater counts. Icarus, 2020, 341, 113645.	2.5	20
65	Fieldâ€Aligned Photoelectron Energy Peaks at High Altitude and on the Nightside of Titan. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006252.	3.6	5
66	Atomic Oxygen Escape on Mars Driven by Electron Impact Excitation and Ionization. Astronomical Journal, 2020, 159, 54.	4.7	3
67	Formation of Recrystallization Cube Texture in Highly Rolled Ni–9.3 at % W. Physics of Metals and Metallography, 2020, 121, 248-253.	1.0	4
68	Fragments Delivered by Secondary Craters at the Chang'Eâ€4 Landing Site. Geophysical Research Letters, 2020, 47, e2020GL087361.	4.0	32
69	The Relationship between Chirality, Sense of Rotation, and Hemispheric Preference of Solar Eruptive Filaments. Astrophysical Journal, 2020, 891, 180.	4.5	11
70	Nitric Oxide Abundance in the Martian Thermosphere and Its Diurnal Variation. Geophysical Research Letters, 2020, 47, e2020GL087252.	4.0	11
71	Asymmetric Lunar Magnetic Perturbations Produced by Reflected Solar Wind Particles. Astrophysical Journal Letters, 2020, 893, L36.	8.3	5
72	Energetic Electron Depletions in the Nightside Martian Upper Atmosphere Revisited. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027670.	2.4	14

#	Article	IF	CITATIONS
73	Effect of Annealing Temperature on Cube Texture Formation in Ni7W/Ni12W/Ni7W Compound Substrate. Physics of Metals and Metallography, 2020, 121, 261-268.	1.0	0
74	Nonlinear Interactions Between Relativistic Electrons and EMIC Waves in Magnetospheric Warm Plasma Environments. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028089.	2.4	8
75	Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms. Nature Communications, 2020, 11, 614.	12.8	26
76	A MAVEN investigation of O ⁺⁺ in the dayside Martian ionosphere. Earth and Planetary Physics, 2020, 4, 1-6.	1.1	2
77	The variations of the Martian exobase altitude. Earth and Planetary Physics, 2020, 4, 1-7.	1.1	15
78	Observation of CO ₂ ⁺⁺ dication in the dayside Martian upper atmosphere. Earth and Planetary Physics, 2020, 4, 1-7.	1.1	5
79	Monte Carlo Calculations of Helium Escape on Mars via Energy Transfer from Hot Oxygen Atoms. Astrophysical Journal, 2020, 902, 121.	4.5	6
80	Deflection of Global Ion Flow by the Martian Crustal Magnetic Fields. Astrophysical Journal Letters, 2020, 898, L54.	8.3	10
81	Energy Conversion between Ions and Electrons through Ion Cyclotron Waves and Embedded Ion-scale Rotational Discontinuity in Collisionless Space Plasmas. Astrophysical Journal Letters, 2020, 904, L16.	8.3	4
82	Solar control of CO ₂ ⁺ ultraviolet doublet emission on Mars. Earth and Planetary Physics, 2020, 4, 1-7.	1.1	1
83	Bidirectional electron conic observations for photoelectrons in the Martian ionosphere. Earth and Planetary Physics, 2020, 4, 1-5.	1.1	5
84	Why Do Torus-unstable Solar Filaments Experience Failed Eruptions?. Astrophysical Journal Letters, 2019, 877, L28.	8.3	35
85	Combined Effects of Equatorial Chorus Waves and High‣atitude Zâ€Mode Waves on Saturn's Radiation Belt Electrons. Geophysical Research Letters, 2019, 46, 8624-8632.	4.0	18
86	Detection of Mesospheric CO ₂ Ice Clouds on Mars in Southern Summer. Geophysical Research Letters, 2019, 46, 7962-7971.	4.0	13
87	Effect of Hot He ⁺ lons on the Electron Pitch Angle Scattering Driven by H ⁺ , He ⁺ , and O ⁺ Band EMIC Waves. Geophysical Research Letters, 2019, 46, 6306-6314.	4.0	14
88	Properties of Stream Interactions and Their Associated Shocks near 1.52 au: MAVEN Observations. Astrophysical Journal, 2019, 879, 118.	4.5	10
89	Unusual Multiple Excitation of Large cale Gravity Waves by Successive Stream Interactions: The Role of Alfvénic Fluctuations. Journal of Geophysical Research: Space Physics, 2019, 124, 6281-6287. 	2.4	3
90	On the Hardness of the Photoelectron Energy Spectrum Near Mars. Journal of Geophysical Research E: Planets, 2019, 124, 2745-2753.	3.6	8

Јим Сиг

#	Article	IF	CITATIONS
91	A Study of Pre-flare Solar Coronal Magnetic Fields: Magnetic Flux Ropes. Astrophysical Journal, 2019, 884, 73.	4.5	50
92	Reduced Atmospheric Ion Escape Above Martian Crustal Magnetic Fields. Geophysical Research Letters, 2019, 46, 11764-11772.	4.0	16
93	The Relationship Between Photoelectron Boundary and Steep Electron Density Gradient on Mars: MAVEN Observations. Journal of Geophysical Research: Space Physics, 2019, 124, 8015-8022.	2.4	10
94	Structural Variability of the Nightside Martian Ionosphere Near the Terminator: Implications on Plasma Sources. Journal of Geophysical Research E: Planets, 2019, 124, 1495-1511.	3.6	18
95	Extreme-ultraviolet Late Phase Caused by Magnetic Reconnection over Quadrupolar Magnetic Configuration in a Solar Flare. Astrophysical Journal, 2019, 878, 46.	4.5	11
96	Evaluating Local Ionization Balance in the Nightside Martian Upper Atmosphere during MAVEN Deep Dip Campaigns. Astrophysical Journal Letters, 2019, 876, L12.	8.3	27
97	Effect of Lowâ€Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere. Journal of Geophysical Research: Space Physics, 2019, 124, 3390-3401.	2.4	23
98	Effect of temperature on the passivation behaviour of the slow-release inhibitor for carbon steel in the simulated recirculating water. Corrosion Engineering Science and Technology, 2019, 54, 286-297.	1.4	2
99	Monte Carlo calculations of the atmospheric sputtering yields on Titan. Astronomy and Astrophysics, 2019, 623, A18.	5.1	8
100	The Morphology of the Topside Martian Ionosphere: Implications on Bulk Ion Flow. Journal of Geophysical Research E: Planets, 2019, 124, 734-751.	3.6	43
101	Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment. Earth and Planetary Physics, 2019, 3, 283-289.	1.1	11
102	The Inertialized Rice Convection Model. Journal of Geophysical Research: Space Physics, 2019, 124, 10294-10317.	2.4	25
103	Electron Temperatures in the Dayside Ionosphere of Mars Derived from Chemistry. Astrophysical Journal, 2019, 887, 177.	4.5	6
104	Photochemical escape of atomic C and N on Mars: clues from a multi-instrument MAVEN dataset. Astronomy and Astrophysics, 2019, 621, A23.	5.1	26
105	A Test Particle Monte Carlo Investigation of the CH ₄ Torus around Saturn. Astronomical Journal, 2019, 157, 15.	4.7	0
106	Ring current proton scattering by low-frequency magnetosonic waves. Earth and Planetary Physics, 2019, 3, 365-372.	1.1	8
107	Photoelectron balance in the dayside Martian upper atmosphere. Earth and Planetary Physics, 2019, 3, 373-379.	1.1	4
108	Species-dependent ion escape on Titan. Earth and Planetary Physics, 2019, 3, 183-189.	1.1	0

#	Article	IF	CITATIONS
109	The Impact of Crustal Magnetic Fields on the Thermal Structure of the Martian Upper Atmosphere. Astrophysical Journal Letters, 2018, 853, L33.	8.3	18
110	Toward a Slow-Release Borate Inhibitor To Control Mild Steel Corrosion in Simulated Recirculating Water. ACS Applied Materials & Interfaces, 2018, 10, 4183-4197.	8.0	56
111	Granulation of drinking water treatment residuals as applicable media for phosphorus removal. Journal of Environmental Management, 2018, 213, 36-46.	7.8	48
112	A Comparative Study between a Failed and a Successful Eruption Initiated from the Same Polarity Inversion Line in AR 11387. Astrophysical Journal, 2018, 858, 121.	4.5	17
113	Ultrawideband Risingâ€Tone Chorus Waves Observed Inside the Oscillating Plasmapause. Journal of Geophysical Research: Space Physics, 2018, 123, 6670-6678.	2.4	11
114	Titan's Variable Ionosphere During the T118 and T119 Cassini Flybys. Geophysical Research Letters, 2018, 45, 8721-8728.	4.0	2
115	Rapid Buildup of a Magnetic Flux Rope during a Confined X2.2 Class Flare in NOAA AR 12673. Astrophysical Journal Letters, 2018, 867, L5.	8.3	38
116	Ionization Efficiency in the Dayside Martian Upper Atmosphere. Astrophysical Journal Letters, 2018, 857, L18.	8.3	22
117	Effects of ultrasonic field on the Pb‣n alloys during heating process. Materialwissenschaft Und Werkstofftechnik, 2018, 49, 928-933.	0.9	0
118	Threeâ€dimensional morphology of eutectic silicon in asâ€cast Alâ€20Âwt% Si alloy with ultrasonic treatment. Materialwissenschaft Und Werkstofftechnik, 2017, 48, 177-182.	0.9	3
119	Photoionization Modeling of Titan's Dayside Ionosphere. Astrophysical Journal Letters, 2017, 850, L26.	8.3	3
120	The Energetic Particle Environment of the Lunar Nearside: SEP Influence. Astrophysical Journal, 2017, 849, 151.	4.5	6
121	Effect of pH on the Passivation of Carbon Steel by Sodium Borosilicate Controlled-Release Inhibitor in Simulated Recirculating Cooling Water. Industrial & Engineering Chemistry Research, 2017, 56, 7239-7252.	3.7	8
122	The Structure of Titan's N ₂ and CH ₄ Coronae. Astronomical Journal, 2017, 154, 271.	4.7	6
123	A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars. Journal of Geophysical Research: Space Physics, 2016, 121, 3464-3475.	2.4	4
124	THE VARIABILITY OF HCN IN TITAN'S UPPER ATMOSPHERE AS IMPLIED BY THE CASSINI ION-NEUTRAL MASS SPECTROMETER MEASUREMENTS. Astrophysical Journal Letters, 2016, 826, L5.	8.3	10
125	SUPRATHERMAL ELECTRONS IN TITAN'S SUNLIT IONOSPHERE: MODEL–OBSERVATION COMPARISONS. Astrophysical Journal, 2016, 826, 131.	4.5	8
126	Influence of local ionization on ionospheric densities in Titan's upper atmosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 5899-5921.	2.4	10

#	Article	IF	CITATIONS
127	The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data. Journal of Geophysical Research E: Planets, 2015, 120, 278-286.	3.6	22
128	Dayâ€ŧoâ€night transport in the Martian ionosphere: Implications from total electron content measurements. Journal of Geophysical Research: Space Physics, 2015, 120, 2333-2346.	2.4	38
129	Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements. Advances in Space Research, 2015, 55, 2177-2189.	2.6	5
130	lonization balance in Titan's nightside ionosphere. Icarus, 2015, 248, 539-546.	2.5	22
131	Titan's upper atmosphere/exosphere, escape processes, and rates. , 2014, , 355-375.		7
132	Density waves in Titan's upper atmosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 490-518.	2.4	19
133	Study on casting composite ingot of 4045/3004/4045 aluminum alloys. Materialwissenschaft Und Werkstofftechnik, 2013, 44, 44-48.	0.9	2
134	On the thermal electron balance in Titan's sunlit upper atmosphere. Icarus, 2013, 223, 234-251.	2.5	35
135	The thermal structure of Titan's upper atmosphere, I: Temperature profiles from Cassini INMS observations. Icarus, 2013, 226, 552-582.	2.5	72
136	Compositional effects in Titan's thermospheric gravity waves. Geophysical Research Letters, 2013, 40, 43-47.	4.0	13
137	The Solar Wind interactions with Lunar Magnetic Anomalies: A case study of the Chang'E-2 plasma data near the Serenitatis antipode. Advances in Space Research, 2012, 50, 1600-1606.	2.6	15
138	The CH ₄ structure in Titan's upper atmosphere revisited. Journal of Geophysical Research, 2012, 117, .	3.3	61
139	Suprathermal electron spectra in the Venus ionosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
140	The implications of the H ₂ variability in Titan's exosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	20
141	Lunar exosphere influence on lunar-based near-ultraviolet astronomical observations. Advances in Space Research, 2011, 48, 1927-1934.	2.6	8
142	Recent Results from Titan's Ionosphere. Space Science Reviews, 2011, 162, 85-111.	8.1	14
143	Experimental investigation of microsegregation in low frequency electromagnetic casting 7075 aluminum alloy. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 500-505.	0.9	9
144	Recent Results from Titan's Ionosphere. Space Sciences Series of ISSI, 2011, , 85-111.	0.0	3

Јим Сиг

#	Article	IF	CITATIONS
145	Ion transport in Titan's upper atmosphere. Journal of Geophysical Research, 2010, 115, .	3.3	38
146	Dynamical and magnetic field time constants for Titan's ionosphere: Empirical estimates and comparisons with Venus. Journal of Geophysical Research, 2010, 115, .	3.3	34
147	Ionization sources in Titan's deep ionosphere. Journal of Geophysical Research, 2010, 115, .	3.3	44
148	Formation of NH3 and CH2NH in Titan's upper atmosphere. Faraday Discussions, 2010, 147, 31.	3.2	66
149	Analysis of Titan's neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements. Icarus, 2009, 200, 581-615.	2.5	276
150	On the ionospheric structure of Titan. Planetary and Space Science, 2009, 57, 1821-1827.	1.7	119
151	On the amount of heavy molecular ions in Titan's ionosphere. Planetary and Space Science, 2009, 57, 1857-1865.	1.7	96
152	Diurnal variations of Titan's ionosphere. Journal of Geophysical Research, 2009, 114, .	3.3	69
153	Methane escape from Titan's atmosphere. Journal of Geophysical Research, 2008, 113, .	3.3	114
154	Distribution and escape of molecular hydrogen in Titan's thermosphere and exosphere. Journal of Geophysical Research, 2008, 113, .	3.3	83
155	Horizontal structures and dynamics of Titan's thermosphere. Journal of Geophysical Research, 2008, 113, .	3.3	83
156	Formation and distribution of benzene on Titan. Journal of Geophysical Research, 2008, 113, .	3.3	174
157	Elemental abundance measurements in low-redshift damped Lyman absorbers. Monthly Notices of the Royal Astronomical Society, 2006, 370, 43-62.	4.4	48
158	Molecular Hydrogen in the Damped Lyα Absorber of Q1331+170. Astrophysical Journal, 2005, 633, 649-663.	4.5	73
159	Statistical Properties of Ultraluminous [ITAL]IRAS[/ITAL] Galaxies from an [ITAL]HST[/ITAL] Imaging Survey. Astronomical Journal, 2001, 122, 63-82.	4.7	47