List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4655227/publications.pdf Version: 2024-02-01

RUIMANC

#	Article	IF	CITATIONS
1	Recent Advances in Asymmetric Organocatalytic Construction of 3,3′â€&pirocyclic Oxindoles. Advanced Synthesis and Catalysis, 2013, 355, 1023-1052.	4.3	655
2	Recent Developments in Catalytic Asymmetric Inverse-Electron-Demand Diels–Alder Reaction. Chemical Reviews, 2013, 113, 5515-5546.	47.7	465
3	Additive Effects on Asymmetric Catalysis. Chemical Reviews, 2016, 116, 4006-4123.	47.7	299
4	Asymmetric dearomatization of phenols. Organic and Biomolecular Chemistry, 2016, 14, 2164-2176.	2.8	274
5	Enantioselective Michael/Cyclization Reaction Sequence: Scaffoldâ€Inspired Synthesis of Spirooxindoles with Multiple Stereocenters. Angewandte Chemie - International Edition, 2011, 50, 9124-9127.	13.8	246
6	Construction of Vicinal All-Carbon Quaternary Stereocenters by Catalytic Asymmetric Alkylation Reaction of 3-Bromooxindoles with 3-Substituted Indoles: Total Synthesis of (+)-Perophoramidine. Journal of the American Chemical Society, 2013, 135, 14098-14101.	13.7	160
7	An Organocatalytic Cascade Strategy for the Enantioselective Construction of Spirocyclopentane Bioxindoles Containing Three Contiguous Stereocenters and Two Spiro Quaternary Centers. Chemistry - A European Journal, 2012, 18, 6737-6741.	3.3	150
8	Visibleâ€Lightâ€Driven, Copperâ€Catalyzed Decarboxylative C(sp ³)â^'H Alkylation of Glycine and Peptides. Angewandte Chemie - International Edition, 2018, 57, 15841-15846.	13.8	148
9	Intermolecular Enantioselective Dearomatization Reaction of βâ€Naphthol Using <i>meso</i> â€Aziridine: A Bifunctional In Situ Generated Magnesium Catalyst. Angewandte Chemie - International Edition, 2015, 54, 2185-2189.	13.8	146
10	S100A4 promotes liver fibrosis via activation of hepatic stellate cells. Journal of Hepatology, 2015, 62, 156-164.	3.7	133
11	Organocatalytic Diastereo―and Enantioselective 1,3â€Dipolar Cycloaddition of Azlactones and Methyleneindolinones. Angewandte Chemie - International Edition, 2013, 52, 8633-8637.	13.8	131
12	The asymmetric synthesis of CF ₃ -containing spiro[pyrrolidin-3,2′-oxindole] through the organocatalytic 1,3-dipolar cycloaddition reaction. Chemical Communications, 2015, 51, 8789-8792.	4.1	126
13	Asymmetric Organocatalytic Nâ€Alkylation of Indoleâ€2â€carbaldehydes with α,βâ€Unsaturated Aldehydes: Oneâ€Pot Synthesis of Chiral Pyrrolo[1,2â€ <i>a</i>]indoleâ€2â€carbaldehydes. Chemistry - A European Journal, 2010, 16, 440-444.	3.3	121
14	Visibleâ€Lightâ€Promoted C(sp ³)â^'H Alkylation by Intermolecular Charge Transfer: Preparation of Unnatural αâ€Amino Acids and Lateâ€Stage Modification of Peptides. Angewandte Chemie - International Edition, 2020, 59, 7461-7466.	13.8	118
15	Copper-Catalyzed Intramolecular Oxytrifluoromethylthiolation of Unactivated Alkenes. Organic Letters, 2014, 16, 5390-5393.	4.6	105
16	Dual-Functional Chiral Cu-Catalyst-Induced Photoredox Asymmetric Cyanofluoroalkylation of Alkenes. ACS Catalysis, 2019, 9, 4470-4476.	11.2	102
17	Application of a CC Bondâ€Forming Conjugate Addition Reaction in Asymmetric Dearomatization of βâ€Naphthols. Angewandte Chemie - International Edition, 2015, 54, 9523-9527.	13.8	101
18	An Organocatalytic Michael–Michael Cascade for the Enantioselective Construction of Spirocyclopentane Bioxindoles: Control of Four Contiguous Stereocenters. Organic Letters, 2014, 16, 544-547.	4.6	100

#	Article	IF	CITATIONS
19	Highly Enantioselective Organocatalyzed Vinylogous Michael-Type Reaction for the Construction of Trifluoromethylated All-Carbon Quaternary Stereocenters. Organic Letters, 2014, 16, 1394-1397.	4.6	98
20	Visibleâ€Lightâ€Promoted Dearomative Fluoroalkylation of βâ€Naphthols through Intermolecular Charge Transfer. Angewandte Chemie - International Edition, 2018, 57, 4747-4751.	13.8	93
21	Enantioselective 1,3-dipolar cycloaddition of methyleneindolinones and N,N′-cyclic azomethine imines. Chemical Communications, 2013, 49, 6713.	4.1	90
22	Asymmetric Aza-Mannich Addition of Oxazolones to N-Tosyl Aldimines: Synthesis of Chiral α-Disubstituted α,β-Diamino Acids. Organic Letters, 2010, 12, 876-879.	4.6	88
23	The Squaramideâ€Catalyzed 1,3â€Dipolar Cycloaddition of Nitroalkenes with <i>N</i> â€2,2,2â€Trifluoroethylisatin Ketimines: An Approach for the Synthesis of 5′â€Trifluoromethylâ€spiro[pyrrolidinâ€3,2′â€oxindoles]. Advanced Synthesis and Catalysis, 2015, 357, 318	4.3 87-3196.	85
24	Enantioselective cyanation via radical-mediated C–C single bond cleavage for synthesis of chiral dinitriles. Nature Communications, 2019, 10, 5373.	12.8	80
25	"One-Pot―Access to 4 <i>H</i> -Chromenes with Formation of a Chiral Quaternary Stereogenic Center by a Highly Enantioselective Iminium-allenamine Involved Oxa-Michaelâ^'Aldol Cascade. Organic Letters, 2010, 12, 4948-4951.	4.6	78
26	Catalytic Asymmetric Construction of Pyrroloindolines via an in Situ Generated Magnesium Catalyst. Organic Letters, 2015, 17, 176-179.	4.6	74
27	Highly Diastereo―and Enantioselective Synthesis of αâ€Alkyl Norstatine Derivatives: Catalytic Asymmetric Mannich Reactions of 5 <i>H</i> â€Oxazolâ€4â€ones. Angewandte Chemie - International Edition, 2012, 51, 7523-7527.	13.8	71
28	Organocatalytic Enantioselective Synthesis of Tetrasubstituted αâ€Amino Allenoates by Dearomative γâ€Addition of 2,3â€Disubstituted Indoles to β,γâ€Alkynylâ€Î±â€imino Esters. Angewandte Chemie - Internation Edition, 2020, 59, 642-647.	ıa l ı3.8	71
29	Efficient Catalytic Kinetic Resolution of Spiroâ€epoxyoxindoles with Concomitant Asymmetric Friedel–Crafts Alkylation of Indoles. Angewandte Chemie - International Edition, 2017, 56, 5332-5335.	13.8	69
30	Direct Site‧pecific and Highly Enantioselective γâ€Functionalization of Linear α,βâ€Unsaturated Ketones: Bifunctional Catalytic Strategy. Angewandte Chemie - International Edition, 2013, 52, 6739-6742.	13.8	68
31	Catalytic Enantioselective Ring-Opening and Ring-Closing Reactions of 3-Isothiocyanato Oxindoles and <i>N</i> -(2-Picolinoyl)aziridines. Organic Letters, 2015, 17, 3004-3007.	4.6	67
32	AdipoR1/AdipoR2 dual agonist recovers nonalcoholic steatohepatitis and related fibrosis via endoplasmic reticulum-mitochondria axis. Nature Communications, 2020, 11, 5807.	12.8	67
33	An Efficient Enantioselective Method for Asymmetric Friedel–Crafts Alkylation of Indoles with α,βâ€Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2009, 351, 772-778.	4.3	66
34	Visibleâ€Lightâ€Promoted Dearomative Fluoroalkylation of βâ€Naphthols through Intermolecular Charge Transfer. Angewandte Chemie, 2018, 130, 4837-4841.	2.0	66
35	Utilization of Combined Chemical Modifications to Enhance the Blood-Brain Barrier Permeability and Pharmacological Activity of Endomorphin-1. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 308-316.	2.5	64
36	Enantioselective Dearomative Arylation of Isoquinolines. ACS Catalysis, 2016, 6, 5290-5294.	11.2	63

#	Article	IF	CITATIONS
37	Endomorphins: potential roles and therapeutic indications in the development of opioid peptide analgesic drugs. Medicinal Research Reviews, 2012, 32, 536-580.	10.5	62
38	Photoinduced, copper-catalyzed three components cyanofluoroalkylation of alkenes with fluoroalkyl iodides as fluoroalkylation reagents. Chemical Communications, 2017, 53, 12317-12320.	4.1	60
39	Visible Light Induced Cu-Catalyzed Asymmetric C(sp ³)–H Alkylation. Journal of the American Chemical Society, 2021, 143, 12777-12783.	13.7	57
40	Catalytic Asymmetric [3 + 2] Cyclization Reactions of 3-Isothiocyanato Oxindoles and Alkynyl Ketones Via an in Situ Generated Magnesium Catalyst. Organic Letters, 2015, 17, 4260-4263.	4.6	56
41	Sodium Halides as Halogenating Reagents: Rhodium(III)â€Catalyzed Versatile and Practical Halogenation of Aryl Compounds. Advanced Synthesis and Catalysis, 2015, 357, 345-349.	4.3	56
42	Asymmetric Synthesis of CF ₃ - and Indole-Containing Thiochromanes via a Squaramide-Catalyzed Michael–Aldol Reaction. Organic Letters, 2016, 18, 3546-3549.	4.6	56
43	Synthesis of Chiral α-Trifluoromethylamines with 2,2,2-Trifluoroethylamine as a "Building Block― Organic Letters, 2016, 18, 956-959.	4.6	55
44	Chiral phosphoric acid catalyzed enantioselective 1,3-dipolar cycloaddition reaction of azlactones. Chemical Communications, 2016, 52, 1377-1380.	4.1	55
45	Chiral Phosphoric Acid Catalyzed Asymmetric Oxidative Dearomatization of Naphthols with Quinones. Organic Letters, 2016, 18, 5288-5291.	4.6	54
46	A catalyst-free 1,3-dipolar cycloaddition of C,N-cyclic azomethine imines and 3-nitroindoles: an easy access to five-ring-fused tetrahydroisoquinolines. Green Chemistry, 2017, 19, 82-87.	9.0	54
47	lodine(III)-Mediated Oxy-fluorination of Alkenyl Oximes: An Easy Path to Monofluoromethyl-Substituted Isoxazolines. Organic Letters, 2015, 17, 3686-3689.	4.6	52
48	Highly Enantioselective Cascade Reaction Catalyzed by Squaramides: the Synthesis of CF3-Containing Chromanes. Organic Letters, 2015, 17, 3826-3829.	4.6	52
49	Highly Enantioselective Ringâ€Opening Reactions of Aziridines with Indole and Its Application in the Building of C ₃ â€Halogenated Pyrroloindolines. Chemistry - A European Journal, 2014, 20, 16478-16483.	3.3	51
50	Organocatalytic enantioselective formal arylation of azlactones using quinones as the aromatic partner. Chemical Communications, 2015, 51, 11280-11282.	4.1	48
51	Asymmetric Synthesis of 2′â€Trifluoromethylated Spiroâ€pyrrolidineâ€3,3′â€oxindoles <i>via</i> Squaramideâ€Catalyzed Umpolung and 1,3â€Dipolar Cycloaddition. Advanced Synthesis and Catalysis, 2016, 358, 3777-3785.	4.3	48
52	A New Class of Highly Potent and Selective Endomorphin-1 Analogues Containing α-Methylene-β-aminopropanoic Acids (Map). Journal of Medicinal Chemistry, 2012, 55, 6224-6236.	6.4	47
53	Copper-catalyzed cascade azidation–cyclization of tryptophols and tryptamines. Chemical Communications, 2015, 51, 12293-12296.	4.1	47
54	Catalytic asymmetric multiple dearomatizations of phenols enabled by a cascade 1,8-addition and Diels–Alder reaction. Chemical Science, 2020, 11, 671-676.	7.4	47

#	Article	IF	CITATIONS
55	Construction of Vicinal All-Carbon Quaternary Stereocenters Enabled by a Catalytic Asymmetric Dearomatization Reaction of β-Naphthols with 3-Bromooxindoles. ACS Catalysis, 2018, 8, 10888-10894.	11.2	46
56	Magnesium Catalysis in Asymmetric Synthesis. CheM, 2019, 5, 1108-1166.	11.7	46
57	Transition-Metal-Free Dehydrosilylative Difluoroamidation of Tetrahydroisoquinolines under Mild Conditions. Organic Letters, 2015, 17, 4212-4215.	4.6	45
58	Catalytic Kinetic Resolution of Spiro-Epoxyoxindoles with 1-Naphthols: Switchable Asymmetric Tandem Dearomatization/Oxa-Michael Reaction and Friedel–Crafts Alkylation of 1-Naphthols at the C4 Position. ACS Catalysis, 2018, 8, 1810-1816.	11.2	44
59	Organocatalytic Highly Enantioselective Monofluoroalkylation of 3-Bromooxindoles: Construction of Fluorinated 3,3′-Disubstituted Oxindoles and Their Derivatives. Organic Letters, 2014, 16, 1960-1963.	4.6	43
60	Photoinduced, Copper-Promoted Regio- and Stereoselective Decarboxylative Alkylation of α,β-Unsaturated Acids with Alkyl Iodides. Organic Letters, 2017, 19, 6412-6415.	4.6	43
61	Mg ^{II} â€Mediated Catalytic Asymmetric Dearomatization (CADA) Reaction of βâ€Naphthols with Dialkyl Acetylenedicarboxylates. Chemistry - A European Journal, 2016, 22, 8483-8487.	3.3	40
62	Catalytic Desymmetrization of <i>meso</i> -Aziridines with Benzofuran-2(3 <i>H</i>)-Ones Employing a Simple In Situ-Generated Magnesium Catalyst. ACS Catalysis, 2015, 5, 7432-7436.	11.2	38
63	The Important Role of the Byproduct Triphenylphosphine Oxide in the Magnesium(II)â€Catalyzed Enantioselective Reaction of Hemiacetals and Phosphorus Ylides. Angewandte Chemie - International Edition, 2018, 57, 9088-9092.	13.8	38
64	Enantioselective Mannich reaction of a highly reactive Horner–Wadsworth–Emmons reagent with imines catalyzed by a bifunctional thiourea. Chemical Science, 2011, 2, 1918.	7.4	37
65	Sodium Iodide/Hydrogen Peroxideâ€Mediated Oxidation/Lactonization for the Construction of Spirocyclic Oxindoleâ€Lactones. Advanced Synthesis and Catalysis, 2016, 358, 2873-2877.	4.3	37
66	Novel antimicrobial peptide <scp>CPF</scp> â€C1 analogs with superior stabilities and activities against multidrugâ€resistant bacteria. Chemical Biology and Drug Design, 2017, 90, 690-702.	3.2	37
67	BNâ€9, a chimeric peptide with mixed opioid and neuropeptide FF receptor agonistic properties, produces nontoleranceâ€forming antinociception in mice. British Journal of Pharmacology, 2016, 173, 1864-1880.	5.4	36
68	Visibleâ€Lightâ€Promoted Stereoselective C(sp ³)â^H Glycosylation for the Synthesis of <i>C</i> â€Glycoamino Acids and <i>C</i> â€Glycopeptides. Angewandte Chemie - International Edition, 2022, 61, .	13.8	36
69	Catalytic Enantioselective Ringâ€Opening Reaction of <i>meso</i> â€Aziridines with αâ€Isothiocyanato Imides. Chemistry - A European Journal, 2013, 19, 9476-9480.	3.3	35
70	Catalytic Asymmetric Ringâ€Opening Reactions of Aziridines with 3â€Arylâ€Oxindoles. Chemistry - an Asian Journal, 2016, 11, 691-695.	3.3	35
71	Silver-Catalyzed Difluoroamidation of Activated Alkenes for the Construction of Difluorinated 3,3-Disubstituted Oxindoles. Journal of Organic Chemistry, 2016, 81, 5782-5788.	3.2	34
72	Asymmetric Dearomative Halogenation of βâ€Naphthols: The Axial Chirality Transfer Reaction. Advanced Synthesis and Catalysis, 2018, 360, 401-405.	4.3	34

#	Article	IF	CITATIONS
73	Design, Synthesis, and Pharmacological Characterization of Novel Endomorphin-1 Analogues as Extremely Potent μ-Opioid Agonists. Journal of Medicinal Chemistry, 2013, 56, 3102-3114.	6.4	33
74	Design of a Combinational Magnesium Catalyst for the Stereocontrolled Cross Reaction of Enones. Chemistry - A European Journal, 2014, 20, 8584-8588.	3.3	33
75	CuSO ₄ -Mediated Decarboxylative Difluoroacetamidation of α,β-Unsaturated Carboxylic Acids. Journal of Organic Chemistry, 2016, 81, 2639-2645.	3.2	29
76	Magnesium Catalysis Mediated Tetrazoles in Desymmetrization Reaction of Aziridines. Organic Letters, 2017, 19, 3211-3214.	4.6	29
77	Nickel-Mediated Asymmetric Allylic Alkylation between Nitroallylic Acetates and Acyl Imidazoles. Organic Letters, 2017, 19, 4826-4829.	4.6	29
78	Phosphoric Acid Catalyzed Asymmetric [2+2] Cyclization/Penicillin–Penillonic Acid Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 4921-4925.	13.8	29
79	Structure-Based Optimization of Multifunctional Agonists for Opioid and Neuropeptide FF Receptors with Potent Nontolerance Forming Analgesic Activities. Journal of Medicinal Chemistry, 2016, 59, 10198-10208.	6.4	28
80	Visibleâ€Lightâ€Driven, Copper atalyzed Decarboxylative C(sp ³)â^'H Alkylation of Glycine and Peptides. Angewandte Chemie, 2018, 130, 16067-16072.	2.0	28
81	Visibleâ€Lightâ€Promoted C(sp ³)â^'H Alkylation by Intermolecular Charge Transfer: Preparation of Unnatural αâ€Amino Acids and Lateâ€6tage Modification of Peptides. Angewandte Chemie, 2020, 132, 7531-7536.	2.0	28
82	Catalyst-controlled switch of regioselectivity in the asymmetric allylic alkylation of oxazolones with MBHCs. Chemical Communications, 2016, 52, 7882-7885.	4.1	27
83	Access to α,γ-Diamino Diacid Derivatives via Organocatalytic Asymmetric 1,4-Addition of Azlactones and Dehydroalanines. Organic Letters, 2018, 20, 7080-7084.	4.6	26
84	The multifunctional peptide DNâ€9 produced peripherally acting antinociception in inflammatory and neuropathic pain via μ―and κâ€opioid receptors. British Journal of Pharmacology, 2020, 177, 93-109.	5.4	26
85	Central Administration of Neuropeptide FF and Related Peptides Attenuate Systemic Morphine Analgesia in Mice. Protein and Peptide Letters, 2011, 18, 403-409.	0.9	25
86	Diastereoselective Synthesis of Biheterocyclic Tetrahydrothiophene Derivatives via Base-Catalyzed Cascade Michael-Aldol [3 + 2] Annulation of 1,4-Dithiane-2,5-diol with Maleimides. Journal of Organic Chemistry, 2015, 80, 6870-6874.	3.2	24
87	Asymmetric synthesis of CF ₃ -containing tetrahydroquinoline via a thiourea-catalyzed cascade reaction. Organic and Biomolecular Chemistry, 2017, 15, 4544-4547.	2.8	24
88	Regio- and stereoselective ring-opening reaction of spiro-epoxyoxindoles with ammonia under catalyst-free conditions. Green Chemistry, 2017, 19, 2107-2110.	9.0	24
89	Arylation of benzyl amines with aromatic nitriles. Chemical Communications, 2018, 54, 11881-11884.	4.1	22
90	An Efficient Nickelâ€Catalyzed Asymmetric Oxazoleâ€Forming Ugiâ€Type Reaction for the Synthesis of Chiral Arylâ€Substituted THIQ Rings. Chemistry - A European Journal, 2017, 23, 6974-6978.	3.3	21

#	Article	IF	CITATIONS
91	Diversiform Reactivity of Naphthols in Asymmetric Dearomatization or Oâ€Alkylation Reactions with Aziridines. Advanced Synthesis and Catalysis, 2018, 360, 4491-4496.	4.3	21
92	Copper catalyzed late-stage C(sp3)-H functionalization of nitrogen heterocycles. Nature Communications, 2021, 12, 4342.	12.8	21
93	Development and Application of α-Heteroatom Ketones in Asymmetric Michael Reaction with β-trans-Nitroalkenes. Journal of Organic Chemistry, 2015, 80, 4336-4348.	3.2	20
94	Asymmetric <i>anti</i> â€6elective Michael Reaction of Imidazoleâ€Modified Ketones with <i>trans</i> â€Î²â€Nitroalkenes. Chemistry - A European Journal, 2015, 21, 1458-1462.	3.3	20
95	Mg ^{II} â€Catalyzed Desymmetrization Reaction of <i>meso</i> â€Aziridines with Hydroxylamines: Synthesis of Novel Chiral 1,2â€Diamine Skeletons. Chemistry - A European Journal, 2016, 22, 17141-17144.	3.3	20
96	Asymmetric Synthesis of α-Trifluoromethyl Pyrrolidines through Organocatalyzed 1,3-Dipolar Cycloaddition Reaction. Journal of Organic Chemistry, 2017, 82, 3482-3490.	3.2	20
97	Efficient Catalytic Kinetic Resolution of Spiroâ€epoxyoxindoles with Concomitant Asymmetric Friedel–Crafts Alkylation of Indoles. Angewandte Chemie, 2017, 129, 5416-5419.	2.0	20
98	Catalytic Asymmetric Reactions of α-Isocyanoacetates and <i>meso</i> -Aziridines Mediated by an in-Situ-Generated Magnesium Catalytic Method. Organic Letters, 2019, 21, 4717-4720.	4.6	20
99	Organocatalytic Enantioselective Synthesis of Tetrasubstituted αâ€Amino Allenoates by Dearomative γâ€Addition of 2,3â€Disubstituted Indoles to β,γâ€Alkynylâ€Î±â€imino Esters. Angewandte Chemie, 2020, 132,	6 3 2-657.	20
100	NDTP Mediated Direct Rapid Amide and Peptide Synthesis without Epimerization. Organic Letters, 2022, 24, 1169-1174.	4.6	20
101	1,3â€Dipolar Cycloaddition between Dehydroalanines and C,N yclic Azomethine Imines: Application to Lateâ€6tage Peptide Modification. Angewandte Chemie - International Edition, 2021, 60, 5331-5338.	13.8	19
102	Tyrosine-Specific Modification via a Dearomatization–Rearomatization Strategy: Access to Azobenzene Functionalized Peptides. Organic Letters, 2021, 23, 4137-4141.	4.6	19
103	Highly diastereoselective oxa-[3+3] cyclization with C,N-cyclic azomethine imines <i>via</i> the copper-catalyzed aerobic oxygenated Cĩ€€ bond of indoles. Chemical Communications, 2018, 54, 2353-2356.	4.1	18
104	Activation of allylic esters in an intramolecular vinylogous kinetic resolution reaction with synergistic magnesium catalysts. Nature Communications, 2020, 11, 2559.	12.8	18
105	Endomorphin-1 analogues (MELs) penetrate the blood–brain barrier and exhibit good analgesic effects with minimal side effects. Neuropharmacology, 2015, 97, 312-321.	4.1	17
106	MEL-N16: A Series of Novel Endomorphin Analogs with Good Analgesic Activity and a Favorable Side Effect Profile. ACS Chemical Neuroscience, 2017, 8, 2180-2193.	3.5	17
107	Catalyst-free tandem halogenation/semipinacol rearrangement of allyl alcohols with sodium halide in water. Green Chemistry, 2018, 20, 2477-2480.	9.0	17
108	Antimicrobial activities and action mechanism studies of transportan 10 and its analogues against multidrugâ€resistant bacteria. Journal of Peptide Science, 2015, 21, 599-607.	1.4	16

#	Article	IF	CITATIONS
109	Development of Biligands Magnesium Catalysis in Asymmetric Conjugate Reactions of C3-Pyrrolyl-Oxindoles. Organic Letters, 2017, 19, 4351-4354.	4.6	14
110	Phosphoric Acid Catalyzed Asymmetric [2+2] Cyclization/Penicillin–Penillonic Acid Rearrangement. Angewandte Chemie, 2018, 130, 5015-5019.	2.0	13
111	Construction of Optically Active 2 <i>H</i> ―and 3 <i>H</i> â€Pyrroles by Cyclization and Chirality Maintaining <i>1,5</i> â€Ester Shift Reactions. Advanced Synthesis and Catalysis, 2019, 361, 3744-3750.	4.3	13
112	Rapeseed Protein-Derived Antioxidant Peptide RAP Ameliorates Nonalcoholic Steatohepatitis and Related Metabolic Disorders in Mice. Molecular Pharmaceutics, 2019, 16, 371-381.	4.6	13
113	Design of a highly potent GLP-1R and GCGR dual-agonist for recovering hepatic fibrosis. Acta Pharmaceutica Sinica B, 2022, 12, 2443-2461.	12.0	12
114	Peripheral and central sites of action for anti-allodynic activity induced by the bifunctional opioid/NPFF receptors agonist BN-9 in inflammatory pain model. European Journal of Pharmacology, 2017, 813, 122-129.	3.5	10
115	Organocatalytic asymmetric [3 + 2] annulation of 1,4-dithiane-2,5-diol with azlactones: access to chiral dihydrothiophen-2(3 <i>H</i>)-one derivatives. Organic Chemistry Frontiers, 2018, 5, 2040-2044.	4.5	10
116	Opposite Effects of Neuropeptide FF on Central Antinociception Induced by Endomorphin-1 and Endomorphin-2 in Mice. PLoS ONE, 2014, 9, e103773.	2.5	10
117	Switchable Skeletal Rearrangement of Dihydroisobenzofuran Acetals with Indoles. Organic Letters, 2019, 21, 4313-4317.	4.6	9
118	Endomorphin analog exhibited superiority in alleviating neuropathic hyperalgesia via weak activation of NMDA receptors. Journal of Neurochemistry, 2020, 155, 662-678.	3.9	8
119	Asymmetric <i>N</i> -aminoalkylation of 3-substituted indoles by N-protected <i>N</i> , <i>O</i> -acetals: an access to chiral propargyl aminals. Organic and Biomolecular Chemistry, 2020, 18, 4169-4173.	2.8	8
120	The Important Role of the Byproduct Triphenylphosphine Oxide in the Magnesium(II) atalyzed Enantioselective Reaction of Hemiacetals and Phosphorus Ylides. Angewandte Chemie, 2018, 130, 9226-9230.	2.0	7
121	Desymmetrization Process by Mg(II)-Catalyzed Intramolecular Vinylogous Michael Reaction. Organic Letters, 2020, 22, 9229-9233.	4.6	7
122	Structure-constrained endomorphin analogs display differential antinociceptive mechanisms in mice after spinal administration. Peptides, 2017, 91, 40-48.	2.4	6
123	Regio- and stereospecific Friedel–Crafts alkylation of indoles with spiro-epoxyoxindoles. Organic and Biomolecular Chemistry, 2018, 16, 3655-3661.	2.8	6
124	Dearomatization–rearomatization strategy of tyrosine for peptide/protein modification through thiol-addition reactions. Chemical Communications, 2021, 57, 12968-12971.	4.1	6
125	Endomorphin-1 analogs containing α-methyl-β-amino acids exhibit potent analgesic activity after peripheral administration. Organic and Biomolecular Chemistry, 2017, 15, 4951-4955.	2.8	5
126	MEL endomorphins act as potent inflammatory analgesics with the inhibition of activated non-neuronal cells and modulation of pro-inflammatory cytokines. Neuropharmacology, 2020, 168, 107992.	4.1	5

#	Article	IF	CITATIONS
127	Synergistic zinc catalyst mediated oxa-Michael kinetic resolution reaction. Organic Chemistry Frontiers, 2021, 8, 3463-3468.	4.5	4
128	Hydrocarbon staple constructing highly efficient α-helix cell-penetrating peptides for intracellular cargo delivery. Chemical Communications, 2020, 56, 15655-15658.	4.1	4
129	Visibleâ€Lightâ€Promoted Stereoselective C(sp ³)â^'H Glycosylation for the Synthesis of <i>C</i> â€Glycoamino Acids and <i>C</i> â€Glycopeptides. Angewandte Chemie, 0, , .	2.0	4
130	Design, synthesis, and biological activity of new endomorphin analogs with multi-site modifications. Bioorganic and Medicinal Chemistry, 2020, 28, 115438.	3.0	3
131	Repeated Endomorphin Analogue MEL-0614 Reduces Tolerance and Improves Chronic Postoperative Pain without Modulating the P2X7R Signaling Pathway. ACS Chemical Neuroscience, 2021, 12, 3124-3139.	3.5	3
132	1,3â€Dipolar Cycloaddition between Dehydroalanines and C,Nâ€Cyclic Azomethine Imines: Application to Lateâ€Stage Peptide Modification. Angewandte Chemie, 2021, 133, 5391-5398.	2.0	2
133	Contribution of the \hat{l}_{4} opioid receptor and enkephalin to the antinociceptive actions of endomorphin-1 analogs with unnatural amino acid modifications in the spinal cord. Peptides, 2021, 141, 170543.	2.4	2
134	Design and Synthesis of a Novel Series of Opioid Dipeptides and Evaluation of Their Analgesic Effect <i>in Vivo</i> . Acta Chimica Sinica, 2016, 74, 44.	1.4	1
135	Peripheral Administration of an Opioid Peptide Analog Ameliorates Morphine-Produced Hyperalgesia in a Spared Nerve Injury Model. International Journal of Peptide Research and Therapeutics, 2022, 28, 1.	1.9	1