List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4654753/publications.pdf Version: 2024-02-01

IENS F REHEELD

#	Article	IF	CITATIONS
1	Entero-Pancreatic Hormone Secretion, Gastric Emptying, and Glucose Absorption After Frequently Sampled Meal Tests. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e188-e204.	3.6	4
2	Erythritol and xylitol differentially impact brain networks involved in appetite regulation in healthy volunteers. Nutritional Neuroscience, 2022, 25, 2344-2358.	3.1	5
3	Vagal afferent cholecystokinin receptor activation is required for glucagonâ€like peptideâ€1–induced satiation. Diabetes, Obesity and Metabolism, 2022, 24, 268-280.	4.4	11
4	Gastric Aspiration Improves Postprandial Glucose Tolerance Without Causing a Compensatory Increase in Appetite and Food Intake. Obesity Surgery, 2022, 32, 1385-1390.	2.1	0
5	The Role of D-allulose and Erythritol on the Activity of the Gut Sweet Taste Receptor and Gastrointestinal Satiation Hormone Release in Humans: A Randomized, Controlled Trial. Journal of Nutrition, 2022, 152, 1228-1238.	2.9	8
6	Quinine Effects on Gut and Pancreatic Hormones and Antropyloroduodenal Pressures in Humans–Role of Delivery Site and Sex. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2870-e2881.	3.6	4
7	Effects of carbohydrate restriction on postprandial glucose metabolism, β -cell function, gut hormone secretion, and satiety in patients with Type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E7-E18.	3.5	17
8	Processing-independent analysis (PIA): a method for quantitation of the total peptide-gene expression. Peptides, 2021, 135, 170427.	2.4	6
9	Chromogranin A in cardiovascular endocrinology. Acta Physiologica, 2021, 231, e13615.	3.8	2
10	Effect of the Natural Sweetener Xylitol on Gut Hormone Secretion and Gastric Emptying in Humans: A Pilot Dose-Ranging Study. Nutrients, 2021, 13, 174.	4.1	17
11	Gastric emptying of solutions containing the natural sweetener erythritol and effects on gut hormone secretion in humans: A pilot doseâ€ranging study. Diabetes, Obesity and Metabolism, 2021, 23, 1311-1321.	4.4	19
12	Cholecystokinin and the hormone concept. Endocrine Connections, 2021, 10, R139-R150.	1.9	21
13	The role of GLP-1 in the postprandial effects of acarbose in type 2 diabetes. European Journal of Endocrinology, 2021, 184, 383-394.	3.7	15
14	Acute ketosis inhibits appetite and decreases plasma concentrations of acyl ghrelin in healthy young men. Diabetes, Obesity and Metabolism, 2021, 23, 1834-1842.	4.4	13
15	Association between habitual sleep duration/quality and appetite markers in individuals with obesity. Physiology and Behavior, 2021, 232, 113345.	2.1	7
16	Expression of Cholecystokinin and its Receptors in the Intestinal Tract of Type 2 Diabetes Patients and Healthy Controls. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2164-2170.	3.6	10
17	Post-oral fat-induced satiation is mediated by endogenous CCK and GLP-1 in a fat self-administration mouse model. Physiology and Behavior, 2021, 234, 113315.	2.1	4
18	Gastrin and the Moderate Hypergastrinemias. International Journal of Molecular Sciences, 2021, 22, 6977.	4.1	10

#	Article	IF	CITATIONS
19	On premises and principles for measurement of gastrointestinal peptide hormones. Peptides, 2021, 141, 170545.	2.4	3
20	The endocrine effects of bitter tastant administration in the gastrointestinal system: intragastric versus intraduodenal administration. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E1-E10.	3.5	9
21	Cholecystokinin and Panic Disorder: Reflections on the History and Some Unsolved Questions. Molecules, 2021, 26, 5657.	3.8	11
22	Intestinal sensing and handling of dietary lipids in gastric bypass–operated patients and matched controls. American Journal of Clinical Nutrition, 2020, 111, 28-41.	4.7	7
23	Association Between Ketosis and Changes in Appetite Markers with Weight Loss Following a Very Lowâ€Energy Diet. Obesity, 2020, 28, 2331-2338.	3.0	17
24	Increased oral sodium chloride intake in humans amplifies selectively postprandial GLPâ€₁ but not GIP, CCK, and gastrin in plasma. Physiological Reports, 2020, 8, e14519.	1.7	6
25	The relationship between cholecystokinin secretion and pancreatic [11C]methionine uptake in patients after partial pancreaticoduodenectomy. Annals of Nuclear Medicine, 2020, 34, 691-695.	2.2	0
26	Circadian variations in plasma concentrations of cholecystokinin and gastrin in man. Scandinavian Journal of Clinical and Laboratory Investigation, 2020, 80, 546-551.	1.2	9
27	Gut Mucosal Gene Expression and Metabolic Changes After Rouxâ€en‥ Gastric Bypass Surgery. Obesity, 2020, 28, 2163-2174.	3.0	7
28	True Chromogranin A concentrations in plasma from patients with small intestinal neuroendocrine tumours. Scandinavian Journal of Gastroenterology, 2020, 55, 565-573.	1.5	11
29	Bilio-enteric flow and plasma concentrations of bile acids after gastric bypass and sleeve gastrectomy. International Journal of Obesity, 2020, 44, 1872-1883.	3.4	13
30	The GLP-1 receptor agonist lixisenatide reduces postprandial glucose in patients with diabetes secondary to total pancreatectomy: a randomised, placebo-controlled, double-blinded crossover trial. Diabetologia, 2020, 63, 1285-1298.	6.3	11
31	The effect of acute intragastric vs. intravenous alcohol administration on inflammation markers, blood lipids and gallbladder motility in healthy men. Alcohol, 2020, 87, 29-37.	1.7	4
32	Measurement of cholecystokinin in plasma with reference to nutrition related obesity studies. Nutrition Research, 2020, 76, 1-8.	2.9	22
33	CCKâ€l and CCKâ€2 receptor agonism do not stimulate GLPâ€l and neurotensin secretion in the isolated perfused rat small intestine or GLPâ€l and PYY secretion in the rat colon. Physiological Reports, 2020, 8, e14352.	1.7	5
34	Sacubitril/valsartan increases postprandial gastrin and cholecystokinin in plasma. Endocrine Connections, 2020, 9, 438-444.	1.9	6
35	Dairy products influence gut hormone secretion and appetite differently: A randomized controlled crossover trial. Journal of Dairy Science, 2020, 103, 1100-1109.	3.4	8
36	Bad kits in the diagnosis of endocrine tumors. International Journal of Endocrine Oncology, 2020, 7, IJE30.	0.4	0

#	Article	IF	CITATIONS
37	Glucagon-Like Peptide 2 Inhibits Postprandial Gallbladder Emptying in Man: A Randomized, Double-Blinded, Crossover Study. Clinical and Translational Gastroenterology, 2020, 11, e00257.	2.5	8
38	Procholecystokinin expression and processing in cardiac myocytes. Peptides, 2019, 111, 71-76.	2.4	4
39	Gastric cancer and gastrin: on the interaction of Helicobacter pylori gastritis and acid inhibitory induced hypergastrinemia. Scandinavian Journal of Gastroenterology, 2019, 54, 1118-1123.	1.5	26
40	Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. Journal of Biological Chemistry, 2019, 294, 12567-12578.	3.4	42
41	Investigating the effect of sex and ketosis on weight-loss-induced changes in appetite. American Journal of Clinical Nutrition, 2019, 109, 1511-1518.	4.7	24
42	Physiological Predictors of Weight Regain at 1â€Year Followâ€Up in Weightâ€Reduced Adults with Obesity. Obesity, 2019, 27, 925-931.	3.0	17
43	Postprandial Nutrient Handling and Gastrointestinal Hormone Secretion After Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy. Gastroenterology, 2019, 156, 1627-1641.e1.	1.3	99
44	Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition and metabolism. FASEB Journal, 2019, 33, 7126-7142.	0.5	36
45	Gastrin secretion in normal subjects and diabetes patients is inhibited by glucagon-like peptide 1: a role in the gastric side effects of GLP-1-derived drugs?. Scandinavian Journal of Gastroenterology, 2019, 54, 1448-1451.	1.5	7
46	Gastric Peptides—Gastrin and Somatostatin. , 2019, 10, 197-228.		30
47	Premises for Cholecystokinin and Gastrin Peptides in Diabetes Therapy. Clinical Medicine Insights: Endocrinology and Diabetes, 2019, 12, 117955141988360.	1.9	13
48	The aromatic amino acid sensor GPR142 controls metabolism through balanced regulation of pancreatic and gut hormones. Molecular Metabolism, 2019, 19, 49-64.	6.5	43
49	Energy intake, gastrointestinal transit, and gut hormone release in response to oral triglycerides and fatty acids in men with and without severe obesity. American Journal of Physiology - Renal Physiology, 2019, 316, G332-G337.	3.4	10
50	Glucoseâ€lowering effects and mechanisms of the bile acidâ€sequestering resin sevelamer. Diabetes, Obesity and Metabolism, 2018, 20, 1623-1631.	4.4	21
51	Effects of caloric and noncaloric sweeteners on antroduodenal motility, gastrointestinal hormone secretion and appetite-related sensations in healthy subjects. American Journal of Clinical Nutrition, 2018, 107, 707-716.	4.7	31
52	A carbohydrate-reduced high-protein diet acutely decreases postprandial and diurnal glucose excursions in type 2 diabetes patients. British Journal of Nutrition, 2018, 119, 910-917.	2.3	39
53	Effects of Smoking Versus Nonsmoking on Postprandial Glucose Metabolism in Heavy Smokers Compared With Nonsmokers. Diabetes Care, 2018, 41, 1260-1267.	8.6	13
54	The impact of rate of weight loss on body composition and compensatory mechanisms during weight reduction: A randomized control trial. Clinical Nutrition, 2018, 37, 1154-1162.	5.0	43

#	Article	IF	CITATIONS
55	Compensatory mechanisms activated with intermittent energy restriction: A randomized control trial. Clinical Nutrition, 2018, 37, 815-823.	5.0	67
56	Three of a (Peptic) Kind!. American Journal of Medicine, 2018, 131, e139-e140.	1.5	0
57	The bile acidâ€sequestering resin sevelamer eliminates the acute <scp>GLP</scp> â€l stimulatory effect of endogenously released bile acids in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2018, 20, 362-369.	4.4	33
58	Cholecystokinin secretion is suppressed by glucagon-like peptide-1: clue to the mechanism of the adverse gallbladder events of GLP-1-derived drugs. Scandinavian Journal of Gastroenterology, 2018, 53, 1429-1432.	1.5	17
59	Hyperosmolar Duodenal Saline Infusion Lowers Circulating Ghrelin and Stimulates Intestinal Hormone Release in Young Men. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4409-4418.	3.6	17
60	RYGB increases the satiating effect of intrajejunal lipid infusions in female rats. Appetite, 2018, 131, 94-99.	3.7	5
61	Comparison of Glycomacropeptide with Phenylalanine Free-Synthetic Amino Acids in Test Meals to PKU Patients: No Significant Differences in Biomarkers, Including Plasma Phe Levels. Journal of Nutrition and Metabolism, 2018, 2018, 1-11.	1.8	14
62	Commentary: measurement of biomarkers in medicine. Biomarkers in Medicine, 2018, 12, 941-944.	1.4	0
63	The Origin and Understanding of the Incretin Concept. Frontiers in Endocrinology, 2018, 9, 387.	3.5	58
64	Restoration of enteroendocrine and pancreatic function after internal hernia and short bowel syndrome in a young woman with gastric bypass - a 2-year follow-up. Physiological Reports, 2018, 6, e13686.	1.7	1
65	Cardiac procholecystokinin expression during haemodynamic changes in the mammalian heart. Peptides, 2018, 108, 7-13.	2.4	7
66	Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight, 2018, 3, .	5.0	86
67	Difference in postprandial GLP-1 response despite similar glucose kinetics after consumption of wheat breads with different particle size in healthy men. European Journal of Nutrition, 2017, 56, 1063-1076.	3.9	25
68	The Dynamics of Gastric Emptying and Self-Reported Feelings of Satiation Are Better Predictors Than Gastrointestinal Hormones of the Effects of Lipid Emulsion Structure on Fat Digestion in Healthy Adultsââ,¬â€A Bayesian Inference Approach. Journal of Nutrition, 2017, 147, 706-714.	2.9	24
69	Distribution and characterisation of CCK containing enteroendocrine cells of the mouse small and large intestine. Cell and Tissue Research, 2017, 369, 245-253.	2.9	33
70	Serum gastrin and cholecystokinin are associated with subsequent development of gastric cancer in a prospective cohort of Finnish smokers. International Journal of Epidemiology, 2017, 46, 914-923.	1.9	27
71	Single-Dose Metformin Enhances Bile Acid–Induced Glucagon-Like Peptide-1 Secretion in Patients With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 4153-4162.	3.6	27
72	Acute effects of Nâ€ŧerminal progastrin fragments on gastric acid secretion in man. Physiological Reports, 2017, 5, e13164.	1.7	3

#	Article	IF	CITATIONS
73	Cholecystokininoma syndrome, calcitonin and diarrhea. Scandinavian Journal of Gastroenterology, 2017, 52, 1304-1305.	1.5	0
74	Analysis of enteroendocrine cell populations in the human colon. Cell and Tissue Research, 2017, 367, 161-168.	2.9	30
75	Vagal Blocking for Obesity Control: a Possible Mechanism-Of-Action. Obesity Surgery, 2017, 27, 177-185.	2.1	26
76	The impact of <scp>EndoBarrier</scp> gastrointestinal liner in obese patients with normal glucose tolerance and in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, 2017, 19, 189-199.	4.4	24
77	Cholecystokinin—From Local Gut Hormone to Ubiquitous Messenger. Frontiers in Endocrinology, 2017, 8, 47.	3.5	168
78	The impact of Roux-en-Y gastric bypass surgery on normal metabolism in a porcine model. PLoS ONE, 2017, 12, e0173137.	2.5	10
79	Effect of L-Tryptophan and L-Leucine on Gut Hormone Secretion, Appetite Feelings and Gastric Emptying Rates in Lean and Non-Diabetic Obese Participants: A Randomized, Double-Blind, Parallel-Group Trial. PLoS ONE, 2016, 11, e0166758.	2.5	29
80	Antibodies make analyses make answers. Biomarkers in Medicine, 2016, 10, 447.	1.4	0
81	Nonsulfated cholecystokinins in cerebral neurons. Neuropeptides, 2016, 60, 37-44.	2.2	13
82	CCK, gastrin and diabetes mellitus. Biomarkers in Medicine, 2016, 10, 1125-1127.	1.4	12
83	Dietary green-plant thylakoids decrease gastric emptying and gut transit, promote changes in the gut microbial flora, but does not cause steatorrhea. Nutrition and Metabolism, 2016, 13, 67.	3.0	23
84	Why cholecystokinin and gastrin are also incretins. Cardiovascular Endocrinology, 2016, 5, 99-101.	0.8	7
85	Cholecystokinin expression in tumors: biogenetic and diagnostic implications. Future Oncology, 2016, 12, 2135-2147.	2.4	10
86	Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects. American Journal of Physiology - Endocrinology and Metabolism, 2016, 310, E1053-E1061.	3.5	82
87	The uncovering and characterization of a CCKoma syndrome in enteropancreatic neuroendocrine tumor patients. Scandinavian Journal of Gastroenterology, 2016, 51, 1172-1178.	1.5	19
88	Evidence of Extrapancreatic Glucagon Secretion in Man. Diabetes, 2016, 65, 585-597.	0.6	136
89	Cholecystokinin in plasma predicts cardiovascular mortality in elderly females. International Journal of Cardiology, 2016, 209, 37-41.	1.7	16
90	Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism. PLoS ONE, 2015, 10, e0142352.	2.5	85

#	Article	IF	CITATIONS
91	Cardiomyocyte Expression and Cell-specific Processing of Procholecystokinin. Journal of Biological Chemistry, 2015, 290, 6837-6843.	3.4	24
92	Islet Cells Serve as Cells of Origin of Pancreatic Gastrin-Positive Endocrine Tumors. Molecular and Cellular Biology, 2015, 35, 3274-3283.	2.3	15
93	Nonsulfated cholecystokinins in the small intestine of pigs and rats. Peptides, 2015, 71, 121-127.	2.4	22
94	Biomarkers and immunoassay kits: a matter of growing concern. Biomarkers in Medicine, 2015, 9, 623-624.	1.4	3
95	The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans. American Journal of Clinical Nutrition, 2015, 102, 548-555.	4.7	59
96	Chromogranin A in gastrinomas: Promises and pitfalls. Clinica Chimica Acta, 2015, 446, 15-20.	1.1	2
97	Gastrointestinal hormone research – with a Scandinavian annotation. Scandinavian Journal of Gastroenterology, 2015, 50, 668-679.	1.5	10
98	Gastroduodenal Changes Two Years After Eradication of Helicobacter pylori in a Population-Based Cohort. Gastroenterology Research, 2015, 8, 171-177.	1.3	0
99	An evaluation of chromogranin A versus gastrin and progastrin in gastrinoma diagnosis and control. Biomarkers in Medicine, 2014, 8, 571-580.	1.4	12
100	Gastrointestinal Hormones and Their Targets. Advances in Experimental Medicine and Biology, 2014, 817, 157-175.	1.6	35
101	Gut hormones — Team workers or solo trippers?. Regulatory Peptides, 2014, 190-191, 39-40.	1.9	1
102	Gene expression profiling of gastric mucosa in mice lacking CCK and gastrin receptors. Regulatory Peptides, 2014, 192-193, 35-44.	1.9	6
103	Dietary thylakoids suppress blood glucose and modulate appetite-regulating hormones in pigs exposed to oral glucose tolerance test. Clinical Nutrition, 2014, 33, 1122-1126.	5.0	24
104	Postprandial effects on plasma lipids and satiety hormones from intake of liposomes made from fractionated oat oil: two randomized crossover studies. Food and Nutrition Research, 2014, 58, 24465.	2.6	26
105	Making sense of chromogranin A in heart disease. Lancet Diabetes and Endocrinology,the, 2013, 1, 7-8.	11.4	9
106	The contribution of gastroenteropancreatic appetite hormones to proteinâ€induced satiety. FASEB Journal, 2013, 27, 249.4.	0.5	0
107	Supersensitive gastrin assay using antibodies raised against a cholecystokinin homolog. Scandinavian Journal of Clinical and Laboratory Investigation, 2012, 72, 175-179.	1.2	2
108	Pitfalls in Diagnostic Gastrin Measurements. Clinical Chemistry, 2012, 58, 831-836.	3.2	40

#	Article	IF	CITATIONS
109	Association of the leucine-7 to proline-7 variation in the signal sequence of neuropeptide Y with major depression. Acta Neuropsychiatrica, 2012, 24, 81-90.	2.1	4
110	Unsulfated cholecystokinin: An overlooked hormone?. Regulatory Peptides, 2012, 173, 1-5.	1.9	13
111	Beginnings: A reflection on the history of gastrointestinal endocrinology. Regulatory Peptides, 2012, 177, S1-S5.	1.9	33
112	The Zollinger–Ellison Syndrome and Mismeasurement of Gastrin. Gastroenterology, 2011, 140, 1444-1453.	1.3	88
113	Cell-Specific Precursor Processing. Results and Problems in Cell Differentiation, 2010, 50, 185-205.	0.7	14
114	The art of measuring gastrin in plasma: A dwindling diagnostic discipline?. Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 353-361.	1.2	27
115	The Cell-Specific Pattern of Cholecystokinin Peptides in Endocrine Cells Versus Neurons Is Governed by the Expression of Prohormone Convertases 1/3, 2, and 5/6. Endocrinology, 2008, 149, 1600-1608.	2.8	41
116	Prohormone convertases 1/3 and 2 together orchestrate the site-specific cleavages of progastrin to release gastrin-34 and gastrin-17. Biochemical Journal, 2008, 415, 35-43.	3.7	40
117	The Biology of Cholecystokinin and Gastrin Peptides. Current Topics in Medicinal Chemistry, 2007, 7, 1154-1165.	2.1	164
118	The endoproteolytic maturation of progastrin and procholecystokinin. Journal of Molecular Medicine, 2006, 84, 544-550.	3.9	33
119	Acute myocardial hypoxia increases BNP gene expression. FASEB Journal, 2004, 18, 1928-1930.	0.5	172
120	Altered control of gastric acid secretion in gastrin-cholecystokinin double mutant mice. Gastroenterology, 2004, 126, 476-487.	1.3	74
121	Cholecystokinin. Best Practice and Research in Clinical Endocrinology and Metabolism, 2004, 18, 569-586.	4.7	102
122	Naming progastrin-derived peptides. Regulatory Peptides, 2004, 120, 177-183.	1.9	30
123	Progastrin processing differs in 7B2 and PC2 knockout animals: a role for 7B2 independent of action on PC2. FEBS Letters, 2002, 510, 89-93.	2.8	20
124	Cyclic AMP-Induced Neuronal Differentiation via Activation of p38 Mitogen-Activated Protein Kinase. Journal of Neurochemistry, 2002, 75, 1870-1877.	3.9	84
125	Increased synthesis but decreased processing of neuronal proCCK in prohormone convertase 2 and 7B2 knockout animals. Journal of Neurochemistry, 2002, 83, 1329-1337.	3.9	28
126	Acute Taurodeoxycholate-Induced Pancreatitis in the Rat Is Associated with HyperCCKemia. International Journal of Gastrointestinal Cancer, 2000, 27, 195-202.	0.4	1

#	Article	IF	CITATIONS
127	Negative cooperativity between juxtaposed E-box and cAMP/TPA responsive elements in the cholecystokinin gene promoter. FEBS Letters, 1999, 448, 15-18.	2.8	16
128	Unique progastrin processing in equine G-cells suggests marginal tyrosyl sulfotransferase activity. FEBS Journal, 1998, 255, 432-438.	0.2	7
129	The effect of intermittent injections of CCK-8S and the CCK-A receptor antagonist devazepide on cell proliferation in exocrine rat pancreas. International Journal of Gastrointestinal Cancer, 1998, 24, 211-218.	0.4	5
130	Processing of precursors of gastroenteropancreatic hormones: diagnostic significance. Journal of Molecular Medicine, 1998, 76, 338-345.	3.9	17
131	How to measure cholecystokinin in tissue, plasma and cerebrospinal fluid. Regulatory Peptides, 1998, 78, 31-39.	1.9	50
132	Altered processing of procholecystokinin in carboxypeptidase E-deficientfatmice: differential synthesis in neurons and endocrine cells. FEBS Letters, 1998, 436, 61-66.	2.8	32
133	The New Biology of Gastrointestinal Hormones. Physiological Reviews, 1998, 78, 1087-1108.	28.8	279
134	Impaired gastric acid secretion in gastrin-deficient mice. American Journal of Physiology - Renal Physiology, 1998, 274, G561-G568.	3.4	113
135	Accurate measurement of cholecystokinin in plasma. Clinical Chemistry, 1998, 44, 991-1001.	3.2	279
136	Characterization of the Cholecystokinin and Gastrin Genes from the Bullfrog, Rana catesbeiana: Evolutionary Conservation of Primary and Secondary Sites of Gene Expression. Endocrinology, 1997, 138, 1719-1727.	2.8	37
137	Disturbed progastrin processing in carboxypeptidase E-deficientfatmice. FEBS Letters, 1997, 416, 45-50.	2.8	29
138	Processing-independent assay of serum gastrin for diagnosis of liver metastases in the Zollinger-Ellison syndrome. , 1997, 71, 308-309.		9
139	Characterization of the Cholecystokinin and Gastrin Genes from the Bullfrog, Rana catesbeiana: Evolutionary Conservation of Primary and Secondary Sites of Gene Expression. Endocrinology, 1997, 138, 1719-1727.	2.8	10
140	Molecular structure and genetic mapping of the mouse gastrin gene. FEBS Letters, 1996, 386, 128-132.	2.8	18
141	Cholecystokinin peptides and receptors in the rat brain during stress. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 59-66.	3.0	28
142	Time-course of the pancreatic changes following long-term stimulation or inhibition of the CCK-A receptor. International Journal of Gastrointestinal Cancer, 1995, 18, 59-66.	0.4	15
143	A distal Sp 1-element is necessary for maximal activity of the human gastrin gene promoter. FEBS Letters, 1995, 369, 225-228.	2.8	12
144	Identification of gastrin component I as gastrin-71. The largest possible bioactive progastrin product. FEBS Journal, 1994, 223, 765-773.	0.2	52

#	Article	IF	CITATIONS
145	Is Invertebrate CCK-Like Immunoreactivity Caused by Asp-Phe-Amides Similar to the lymnaDFamides (a) Tj ETQq1 1	0.78431 3.8	4 ₀ gBT /Ove
146	lleal expression of gastrin and cholecystokinin. FEBS Letters, 1994, 343, 115-119.	2.8	17
147	The Tumor Biology Of Gastrin And Cholecystokinin. Advances in Cancer Research, 1994, 63, 295-347.	5.0	125
148	LymnaDFamides, a new family of neuropeptides from the pond snail, Lymnaea stagnalis. Clue to cholecystokinin immunoreactivity in invertebrates?. FEBS Journal, 1993, 213, 875-879.	0.2	16
149	cDNA deduced procionin. FEBS Letters, 1993, 331, 60-64.	2.8	35
150	Co-transcription of the gastrin and cholecystokinin genes with selective translation of gastrin mRNA in a human gastric carcinoma cell line. FEBS Letters, 1992, 309, 47-50.	2.8	36
151	Posttranslational attenuation of peptide gene expression. FEBS Letters, 1990, 268, 1-4.	2.8	18
152	Expression of the cholecystokinin gene in a human (small-cell) lung carcinoma cell-line. FEBS Letters, 1990, 270, 30-32.	2.8	24
153	A unique high-titer antiserum to gastrin. Scandinavian Journal of Clinical and Laboratory Investigation, 1981, 41, 723-727.	1.2	39
154	Secretory effects of cholecystokinins on the isolated perfused porcine pancreas. Acta Physiologica Scandinavica, 1981, 111, 225-231.	2.2	41
155	Concentration and In Vivo Synthesis of Cholecystokinin in Subcortical Regions of the Rat Brain. Journal of Neurochemistry, 1980, 35, 479-483.	3.9	40
156	A peptide resembling COOH-terminal tetrapeptide amide of gastrin from a new gastrointestinal endocrine cell type. Nature, 1979, 277, 575-578.	27.8	80
157	The predominanting molecular form of gastrin and cholecystokinin in the gut is a small peptide corresponding to their COOHâ€ŧerminal tetrapeptide amide. Acta Physiologica Scandinavica, 1979, 105, 117-119.	2.2	47
158	Small Cell Carcinoma of the Lung: Relation of Calcitonin to Bone Marrow Metastases, Parathormone and Gastrin. Acta Medica Scandinavica, 1979, 206, 215-218.	0.0	6
159	Localisation of gastrins to neuro- and adenohypophysis. Nature, 1978, 271, 771-773.	27.8	253
160	The effect of gastrin on basal and aminoacid-stimulated insulin and glucagon secretion in man. European Journal of Clinical Investigation, 1978, 8, 5-9.	3.4	32
161	Peptide neurons in the vagus, splanchnic and sciatic nerves*. Acta Physiologica Scandinavica, 1978, 104, 499-501.	2.2	433
162	Determination of Gastrin in Serum. Scandinavian Journal of Gastroenterology, 1973, 8, 101-112.	1.5	259

#	Article	IF	CITATIONS
163	Gastrins in Serum. Scandinavian Journal of Gastroenterology, 1973, 8, 577-583.	1.5	75
164	The Effect of Gastrin on Basal- and Glucose-Stimulated Insulin Secretion in Man. Journal of Clinical Investigation, 1973, 52, 1415-1426.	8.2	152
165	A CASE OF ASYMPTOMATIC JUVENILE DIABETES MELLITUS WITH SEVERE INSULIN DEFICIENCY. Acta Medica Scandinavica, 1970, 187, 305-307.	0.0	0