Mohammed Naffakh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4654490/publications.pdf

Version: 2024-02-01

69 papers

2,998 citations

33 h-index 53 g-index

70 all docs

70 docs citations

times ranked

70

2509 citing authors

#	Article	IF	CITATIONS
1	Investigation of the Crystallization Kinetics and Melting Behaviour of Polymer Blend Nanocomposites Based on Poly(L-Lactic Acid), Nylon 11 and TMDCs WS2. Polymers, 2022, 14, 2692.	4.5	O
2	Nanocomposite Materials Based on TMDCs WS2 Modified Poly(l-Lactic Acid)/Poly(Vinylidene Fluoride) Polymer Blends. Polymers, 2021, 13, 2179.	4. 5	1
3	The Effect of WS2 Nanosheets on the Non-Isothermal Cold- and Melt-Crystallization Kinetics of Poly(I-lactic acid) Nanocomposites. Polymers, 2021, 13, 2214.	4.5	5
4	Biopolymer Nanocomposite Materials Based on Poly(L-lactic Acid) and Inorganic Fullerene-like WS2 Nanoparticles. Polymers, 2021, 13, 2947.	4.5	7
5	Nanocomposite Materials with Poly(l-lactic Acid) and Transition-Metal Dichalcogenide Nanosheets 2D-TMDCs WS2. Polymers, 2020, 12, 2699.	4.5	7
6	Effect of WS2 Inorganic Nanotubes on Isothermal Crystallization Behavior and Kinetics of Poly(3-Hydroxybutyrate-co-3-hydroxyvalerate). Polymers, 2018, 10, 166.	4.5	8
7	Polymer blend nanocomposites based on poly(<scp>l</scp> -lactic acid), polypropylene and WS ₂ inorganic nanotubes. RSC Advances, 2016, 6, 40033-40044.	3.6	25
8	Morphology and thermal properties of biodegradable poly(hydroxybutyrate-co-hydroxyvalerate)/tungsten disulphide inorganic nanotube nanocomposites. Materials Chemistry and Physics, 2016, 170, 145-153.	4.0	27
9	Non-Isothermal Cold-Crystallization Behavior and Kinetics of Poly(l-Lactic Acid)/WS2 Inorganic Nanotube Nanocomposites. Polymers, 2015, 7, 2175-2189.	4.5	23
10	WS2 inorganic nanotubes reinforced poly(l-lactic acid)/hydroxyapatite hybrid composite biomaterials. RSC Advances, 2015, 5, 65514-65525.	3 . 6	23
11	Isothermal crystallization kinetics and melting behavior of poly(l-lactic acid)/WS2 inorganic nanotube nanocomposites. Journal of Materials Science, 2015, 50, 6066-6074.	3.7	15
12	Bio-based polymer nanocomposites based on nylon 11 and WS ₂ inorganic nanotubes. RSC Advances, 2015, 5, 17879-17887.	3.6	10
13	Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes. Inorganics, 2014, 2, 291-312.	2.7	49
14	Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review. Current Opinion in Solid State and Materials Science, 2014, 18, 62-80.	11.5	90
15	Novel polypropylene/inorganic fullerene-like WS2 nanocomposites containing a \hat{l}^2 -nucleating agent: Mechanical, tribological and rheological properties. Materials Chemistry and Physics, 2014, 144, 98-106.	4.0	23
16	Novel poly(3-hydroxybutyrate) nanocomposites containing WS2 inorganic nanotubes with improved thermal, mechanical and tribological properties. Materials Chemistry and Physics, 2014, 147, 273-284.	4.0	38
17	Development of novel melt-processable biopolymer nanocomposites based on poly(I-lactic acid) and WS2 inorganic nanotubes. CrystEngComm, 2014, 16, 5062.	2.6	39
18	Inorganic WS ₂ nanotubes that improve the crystallization behavior of poly(3-hydroxybutyrate). CrystEngComm, 2014, 16, 1126-1135.	2.6	23

#	Article	IF	CITATIONS
19	Nanocomposite biomaterials based on poly(ether-ether-ketone) (PEEK) and WS2 inorganic nanotubes. Journal of Materials Chemistry B, 2014, 2, 4509.	5.8	35
20	Mechanical and thermal behaviour of isotactic polypropylene reinforced with inorganic fullerene-like WS2 nanoparticles: Effect of filler loading and temperature. Materials Chemistry and Physics, 2013, 141, 979-989.	4.0	21
21	Enhancing the thermomechanical behaviour of poly(phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2013, 54, 10-19.	7.6	51
22	Evaluating the Reinforcement of Inorganic Fullerene-like Nanoparticles in Thermoplastic Matrices by Depth-Sensing Indentation. Journal of Physical Chemistry C, 2013, 117, 20936-20943.	3.1	24
23	Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Progress in Polymer Science, 2013, 38, 1163-1231.	24.7	154
24	Polypropylene/Glass Fiber Hierarchical Composites Incorporating Inorganic Fullerene-like Nanoparticles for Advanced Technological Applications. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9691-9700.	8.0	39
25	Inorganic Nanoparticle-Modified Poly(Phenylene Sulphide)/ Carbon Fiber Laminates: Thermomechanical Behaviour. Materials, 2013, 6, 3171-3193.	2.9	25
26	Towards the development of poly(phenylene sulphide) based nanocomposites with enhanced mechanical, electrical and tribological properties. Materials Chemistry and Physics, 2012, 135, 348-357.	4.0	34
27	New inorganic nanotube polymer nanocomposites: improved thermal, mechanical and tribological properties in isotactic polypropylene incorporating INT-MoS2. Journal of Materials Chemistry, 2012, 22, 17002.	6.7	36
28	Morphology and thermal properties of novel poly(phenylene sulfide) hybrid nanocomposites based on single-walled carbon nanotubes and inorganic fullerene-like WS ₂ nanoparticles. Journal of Materials Chemistry, 2012, 22, 1418-1425.	6.7	45
29	Novel Polypropylene/Inorganic Fullerene-like WS ₂ Nanocomposites Containing a Î ² -Nucleating Agent: Isothermal Crystallization and Melting Behavior. Journal of Physical Chemistry B, 2012, 116, 1788-1795.	2.6	23
30	Rheological and Tribological Properties of Carbon Nanotube/Thermoplastic Nanocomposites Incorporating Inorganic Fullerene-Like WS ₂ Nanoparticles. Journal of Physical Chemistry B, 2012, 116, 7959-7969.	2.6	57
31	Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Composites Part A: Applied Science and Manufacturing, 2012, 43, 603-612.	7.6	83
32	Flammability properties of PEEK and carbon nanotube composites. Polymer Degradation and Stability, 2012, 97, 2492-2502.	5.8	39
33	Grafting of an aminated poly(phenylene sulphide) derivative to functionalized single-walled carbon nanotubes. Carbon, 2012, 50, 857-868.	10.3	64
34	Synthesis and characterization of nitrated and aminated poly(phenylene sulfide) derivatives for advanced applications. Materials Chemistry and Physics, 2012, 131, 605-614.	4.0	42
35	High-performance nanocomposites based on polyetherketones. Progress in Materials Science, 2012, 57, 1106-1190.	32.8	222
36	Tuning the properties of carbon fiber-reinforced poly(phenylene sulphide) laminates via incorporation of inorganic nanoparticles. Polymer, 2012, 53, 2369-2378.	3.8	52

#	Article	IF	CITATIONS
37	Isothermal Crystallization Kinetics of Novel Isotactic Polypropylene/MoS ₂ Inorganic Nanotube Nanocomposites. Journal of Physical Chemistry B, 2011, 115, 2248-2255.	2.6	31
38	Novel Polypropylene/Inorganic Fullerene-like WS ₂ Nanocomposites Containing a β-Nucleating Agent: Dynamic Crystallization and Melting Behavior. Journal of Physical Chemistry B, 2011, 115, 10836-10843.	2.6	21
39	Dynamic Crystallization Kinetics and Nucleation Parameters of a New Generation of Nanocomposites Based on Isotactic Polypropylene and MoS2Inorganic Nanotubes. Journal of Physical Chemistry B, 2011, 115, 2850-2856.	2.6	17
40	Towards a new generation of polymer nanocomposites based on inorganic nanotubes. Journal of Materials Chemistry, 2011, 21, 3574.	6.7	33
41	New hybrid nanocomposites containing carbon nanotubes, inorganic fullerene-like WS2 nanoparticles and poly(ether ether ketone) (PEEK). Journal of Materials Chemistry, 2011, 21, 7425.	6.7	60
42	Effect of particle size and a processing aid on the crystallization and melting behavior of iPP/red pine wood flour composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 935-949.	7.6	20
43	Solvent-Free Preparation of High-Toughness Epoxyâ^'SWNT Composite Materials. ACS Applied Materials & Amp; Interfaces, 2011, 3, 1441-1450.	8.0	70
44	Novel melt-processable nylon-6/inorganic fullerene-like WS2 nanocomposites: Complex isothermal crystallization kinetics and melting behaviour. Materials Chemistry and Physics, 2011, 128, 265-273.	4.0	18
45	Novel melt-processable nylon-6/inorganic fullerene-like WS2 nanocomposites for critical applications. Materials Chemistry and Physics, 2011, 129, 641-648.	4.0	33
46	Mechanical and electrical properties of novel poly(ether ether ketone)/carbon nanotube/inorganic fullerene-like WS2 hybrid nanocomposites: Experimental measurements and theoretical predictions. Materials Chemistry and Physics, 2011, 130, 126-133.	4.0	26
47	The crystallization of polypropylene in multiwall carbon nanotubeâ€based composites. Polymer Composites, 2011, 32, 324-333.	4.6	34
48	Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether) Tj ETQq0 0 0 0	gBT/Qver	lock 10 Tf 50
49	Integration of block copolymer-wrapped single-wall carbon nanotubes into a trifunctional epoxy resin. Influence on thermal performance. Polymer Degradation and Stability, 2010, 95, 2065-2075.	5.8	14
50	High performance PEEK/carbon nanotube composites compatibilized with polysulfones-I. Structure and thermal properties. Carbon, 2010, 48, 3485-3499.	10.3	88
51	High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties. Carbon, 2010, 48, 3500-3511.	10.3	114
52	Novel Melt-Processable Nanocomposites Based on Isotactic Polypropylene and Carbon Nitride: Morphology, Crystallization, and Dynamic Mechanical Properties. Soft Materials, 2010, 8, 407-425.	1.7	17
53	Novel Melt-Processable Poly(ether ether ketone)(PEEK)/Inorganic Fullerene-like WS ₂ Nanoparticles for Critical Applications. Journal of Physical Chemistry B, 2010, 114, 11444-11453.	2.6	66
54	The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites. Nanotechnology, 2009, 20, 315707.	2.6	87

#	Article	IF	CITATIONS
55	Crystalline Transformations in Nylon-6/Single-Walled Carbon Nanotube Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 6120-6126.	0.9	14
56	Development and characterization of PEEK/carbon nanotube composites. Carbon, 2009, 47, 3079-3090.	10.3	170
57	Unique Nucleation Activity of Inorganic Fullerene-like WS ₂ Nanoparticles in Polyphenylene Sulfide Nanocomposites: Isokinetic and Isoconversional Study of Dynamic Crystallization Kinetics. Journal of Physical Chemistry B, 2009, 113, 7107-7115.	2.6	41
58	Use of Inorganic Fullerene-like WS ₂ to Produce New High-Performance Polyphenylene Sulfide Nanocomposites: Role of the Nanoparticle Concentration. Journal of Physical Chemistry B, 2009, 113, 10104-10111.	2.6	54
59	Isothermal crystallization kinetics of isotactic polypropylene with inorganic fullerene-like WS2 nanoparticles. Thermochimica Acta, 2008, 472, 11-16.	2.7	35
60	Unique Isothermal Crystallization Behavior of Novel Polyphenylene Sulfide/Inorganic Fullerene-like WS ₂ Nanocomposites. Journal of Physical Chemistry B, 2008, 112, 14819-14828.	2.6	47
61	Influence of inorganic fullereneâ€like WS ₂ nanoparticles on the thermal behavior of isotactic polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2309-2321.	2.1	77
62	Kinetic analysis of thermo-oxidative degradation of PEEK/thermotropic liquid crystalline polymer blends. Polymer Engineering and Science, 2006, 46, 129-138.	3.1	13
63	Isothermal crystallization kinetics of PEEK/Vectra \hat{A}^{\odot} blends by DSC and time-resolved synchrotron X-ray diffraction. Polymer Engineering and Science, 2006, 46, 1411-1418.	3.1	14
64	Study of a reactive epoxy–amine resin enabling in situ dissolution of thermoplastic films during resin transfer moulding for toughening composites. Composites Science and Technology, 2006, 66, 1376-1384.	7.8	49
65	Modeling the chemorheological behavior of epoxy/liquid aromatic diamine for resin transfer molding applications. Journal of Applied Polymer Science, 2006, 102, 4228-4237.	2.6	15
66	Cure kinetics of an epoxy/liquid aromatic diamine modified with poly(ether imide). Journal of Applied Polymer Science, 2005, 96, 660-672.	2.6	31
67	Cure kinetics and modeling of an epoxy resin cross-linked in the presence of two different diamine hardeners. Polymer Engineering and Science, 2005, 45, 1581-1589.	3.1	22
68	Thermal properties, structure and morphology of PEEK/thermotropic liquid crystalline polymer blends. Polymer International, 2003, 52, 1876-1886.	3.1	31
69	Thermal decomposition of technological polymer blends 1. Poly(aryl ether ether ketone) with a thermotropic liquid crystalline polymer. Polymer Degradation and Stability, 1999, 66, 405-413.	5.8	47