Daniel J. Price

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4653523/publications.pdf

Version: 2024-02-01

45317 31976 9,238 147 53 90 citations g-index h-index papers 150 150 150 4489 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<scp>SPLASH</scp> : An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations. Publications of the Astronomical Society of Australia, 2007, 24, 159-173.	3.4	590
2	Smoothed particle hydrodynamics and magnetohydrodynamics. Journal of Computational Physics, 2012, 231, 759-794.	3.8	503
3	Producing Ultrastrong Magnetic Fields in Neutron Star Mergers. Science, 2006, 312, 719-722.	12.6	360
4	Modelling discontinuities and Kelvin–Helmholtz instabilities in SPH. Journal of Computational Physics, 2008, 227, 10040-10057.	3.8	311
5	An energy-conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and N-body codes. Monthly Notices of the Royal Astronomical Society, 2007, 374, 1347-1358.	4.4	271
6	<scp>Phantom</scp> : A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	267
7	Kinematic Evidence for an Embedded Protoplanet in a Circumstellar Disk. Astrophysical Journal Letters, 2018, 860, L13.	8.3	214
8	On planet formation in HL Tau. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L73-L77.	3.3	207
9	The impact of magnetic fields on single and binary star formation. Monthly Notices of the Royal Astronomical Society, 2007, 377, 77-90.	4.4	198
10	Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2253-2266.	4.4	159
11	Tearing up the disc: misaligned accretion on to a binary. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1946-1954.	4.4	146
12	The effect of magnetic fields on star cluster formation. Monthly Notices of the Royal Astronomical Society, 2008, 385, 1820-1834.	4.4	142
13	Smoothed Particle Magnetohydrodynamics - II. Variational principles and variable smoothing-length terms. Monthly Notices of the Royal Astronomical Society, 2004, 348, 139-152.	4.4	131
14	THE DENSITY VARIANCE–MACH NUMBER RELATION IN SUPERSONIC, ISOTHERMAL TURBULENCE. Astrophysical Journal Letters, 2011, 727, L21.	8.3	127
15	Kinematic detection of a planet carving a gap in a protoplanetary disk. Nature Astronomy, 2019, 3, 1109-1114.	10.1	124
16	On the diffusive propagation of warps in thin accretion discs. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	122
17	THE KOZAI-LIDOV MECHANISM IN HYDRODYNAMICAL DISKS. Astrophysical Journal Letters, 2014, 792, L33.	8.3	122
18	Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1270-1284.	4.4	122

#	Article	IF	CITATIONS
19	Nine Localized Deviations from Keplerian Rotation in the DSHARP Circumstellar Disks: Kinematic Evidence for Protoplanets Carving the Gaps. Astrophysical Journal Letters, 2020, 890, L9.	8.3	116
20	Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1037-1061.	4.4	115
21	Wave-like warp propagation in circumbinary discs – I. Analytic theory and numerical simulations. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2142-2156.	4.4	113
22	TEARING UP THE DISK: HOW BLACK HOLES ACCRETE. Astrophysical Journal Letters, 2012, 757, L24.	8.3	110
23	Inefficient star formation: the combined effects of magnetic fields and radiative feedback. Monthly Notices of the Royal Astronomical Society, 2009, 398, 33-46.	4.4	108
24	EVIDENCE FOR ACCRETION RATE CHANGE DURING TYPE I X-RAY BURSTS. Astrophysical Journal, 2013, 772, 94.	4.5	108
25	Smoothed Particle Magnetohydrodynamics — III. Multidimensional tests and the â^‡Â·B= 0 constraint. Monthly Notices of the Royal Astronomical Society, 2005, 364, 384-406.	4.4	103
26	Collapse of a molecular cloud core to stellar densities: stellar-core and outflow formation in radiation magnetohydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 77-95.	4.4	103
27	Dusty gas with smoothed particle hydrodynamics - I. Algorithm and test suite. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2345-2364.	4.4	100
28	A comparison between grid and particle methods on the statistics of driven, supersonic, isothermal turbulence. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	4.4	99
29	MAGMA: a three-dimensional, Lagrangian magnetohydrodynamics code for merger applications. Monthly Notices of the Royal Astronomical Society, 2007, 379, 915-931.	4.4	96
30	On the Bardeen–Petterson effect in black hole accretion discs. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1526-1540.	4.4	95
31	Smoothed Particle Magnetohydrodynamics - I. Algorithm and tests in one dimension. Monthly Notices of the Royal Astronomical Society, 2004, 348, 123-138.	4.4	90
32	The effect of a wider initial separation on common envelope binary interaction simulations. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4028-4044.	4.4	89
33	Dusty gas with one fluid. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2136-2146.	4.4	85
34	Flybys in protoplanetary discs: I. Gas and dust dynamics. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4114-4139.	4.4	85
35	Constrained hyperbolic divergence cleaning for smoothed particle magnetohydrodynamics. Journal of Computational Physics, 2012, 231, 7214-7236.	3.8	83
36	Algorithmic comparisons of decaying, isothermal, supersonic turbulence. Astronomy and Astrophysics, 2009, 508, 541-560.	5.1	81

#	Article	IF	CITATIONS
37	On the accumulation of planetesimals near disc gaps created by protoplanets. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1450-1462.	4.4	81
38	Two mechanisms for dust gap opening in protoplanetary discs. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 459, L1-L5.	3.3	81
39	GIANT OUTBURSTS IN Be/X-RAY BINARIES. Astrophysical Journal Letters, 2014, 790, L34.	8.3	79
40	On the origin of horseshoes in transitional discs. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1449-1455.	4.4	79
41	A method for reconstructing the variance of a 3D physical field from 2D observations: application to turbulence in the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1507-1515.	4.4	78
42	On the Diversity of Asymmetries in Gapped Protoplanetary Disks. Astronomical Journal, 2021, 161, 33.	4.7	69
43	EVIDENCE FOR ENHANCED PERSISTENT EMISSION DURING SUB-EDDINGTON THERMONUCLEAR BURSTS. Astrophysical Journal, 2015, 801, 60.	4.5	68
44	Collimated jets from the first core. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 423, L45-L49.	3.3	65
45	A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2015, 451, 813-826.	4.4	64
46	Tearing up a misaligned accretion disc with a binary companion. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1251-1258.	4.4	62
47	Grand Challenges in Protoplanetary Disc Modelling. Publications of the Astronomical Society of Australia, 2016, 33, .	3.4	61
48	Variational principles for relativistic smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2001, 328, 381-392.	4.4	59
49	A method for reconstructing the PDF of a 3D turbulent density field from 2D observations. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 405, L56-L60.	3.3	59
50	Evidence for a Circumplanetary Disk around Protoplanet PDS 70 b. Astrophysical Journal Letters, 2019, 877, L33.	8.3	59
51	A circumbinary protoplanetary disk in a polar configuration. Nature Astronomy, 2019, 3, 230-235.	10.1	59
52	The Ophiuchus DIsc Survey Employing ALMA (ODISEA) – III. The evolution of substructures in massive discs at 3–5 au resolution. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2934-2953.	4.4	57
53	Extending common envelope simulations from Roche lobe overflow to the nebular phase. Monthly Notices of the Royal Astronomical Society, 2019, 484, 631-647.	4.4	55
54	Dusty gas with smoothed particle hydrodynamics - II. Implicit timestepping and astrophysical drag regimes. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2365-2376.	4.4	54

#	Article	IF	Citations
55	Dust and gas mixtures with multiple grain species – a one-fluid approach. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1940-1956.	4.4	54
56	The morphology of the Milky Way – I. Reconstructing CO maps from simulations in fixed potentials. Monthly Notices of the Royal Astronomical Society, 2014, 444, 919-941.	4.4	54
57	There is no magnetic braking catastrophe: low-mass star cluster and protostellar disc formation with non-ideal magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1719-1741.	4.4	54
58	Suppression of the accretion rate in thin discs around binary black holes. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1243-1253.	4.4	53
59	Flybys in protoplanetary discs – II. Observational signatures. Monthly Notices of the Royal Astronomical Society, 2020, 491, 504-514.	4.4	51
60	Post-periapsis pancakes: sustenance for self-gravity in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3612-3627.	4.4	49
61	Is the dust-to-gas ratio constant in molecular clouds?. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 471, L52-L56.	3.3	49
62	Smoothed Particle Magnetohydrodynamics - IV. Using the vector potential. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1475-1499.	4.4	47
63	On dust entrainment in photoevaporative winds. Monthly Notices of the Royal Astronomical Society, 2016, 461, 742-759.	4.4	47
64	Inhomogeneous cosmology with numerical relativity. Physical Review D, 2017, 95, .	4.7	47
65	The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1859-1880.	4.4	47
66	Rapid AGN accretion from counter-rotating discs. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2547-2552.	4.4	45
67	AN ALMA SEARCH FOR SUBSTRUCTURE, FRAGMENTATION, AND HIDDEN PROTOSTARS IN STARLESS CORES IN CHAMAELEON I. Astrophysical Journal, 2016, 823, 160.	4.5	44
68	Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds. Journal of Computational Physics, 2016, 322, 326-344.	3.8	43
69	Einstein's Universe: Cosmological structure formation in numerical relativity. Physical Review D, 2019, 99, .	4.7	43
70	Magnetic fields and the dynamics of spiral galaxies. Monthly Notices of the Royal Astronomical Society, 0, 383, 497-512.	4.4	41
71	dustybox and dustywave: two test problems for numerical simulations of two-fluid astrophysical dust-gas mixtures. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1491-1497.	4.4	41
72	Resolving high Reynolds numbers in smoothed particle hydrodynamics simulations of subsonic turbulence. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 420, L33-L37.	3.3	41

#	Article	IF	Citations
73	The evolution of large cavities and disc eccentricity in circumbinary discs. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3362-3380.	4.4	40
74	Signatures of an eccentric disc cavity: Dust and gas in IRS 48. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2579-2587.	4.4	37
75	A switch to reduce resistivity in smoothed particle magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2810-2817.	4.4	36
76	Ambipolar diffusion in smoothed particle magnetohydrodynamics. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1104-1112.	4.4	36
77	Common envelopes in massive stars: towards the role of radiation pressure and recombination energy in ejecting red supergiant envelopes. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5462-5480.	4.4	36
78	The effect of magnetic fields on the formation of circumstellar discs around young stars. Astrophysics and Space Science, 2007, 311, 75-80.	1.4	35
79	Dusty gas with one fluid in smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2147-2163.	4.4	35
80	Magnetic field evolution in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4879-4888.	4.4	35
81	Separating extended disc features from the protoplanet in PDSÂ70 using VLT/SINFONI. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5819-5837.	4.4	35
82	MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2186-2198.	4.4	34
83	The impact of recombination energy on simulations of the common-envelope binary interaction. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5333-5349.	4.4	34
84	The impact of non-ideal magnetohydrodynamics on binary star formation. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1788-1804.	4.4	33
85	Smoothed particle magnetohydrodynamic simulations of protostellar outflows with misaligned magnetic field and rotation axes. Monthly Notices of the Royal Astronomical Society, 2015, 451, 288-299.	4.4	32
86	The Trouble with Hubble: Local versus Global Expansion Rates in Inhomogeneous Cosmological Simulations with Numerical Relativity. Astrophysical Journal Letters, 2018, 865, L4.	8.3	32
87	Are the spiral arms in the MWCÂ758 protoplanetary disc driven by a companion inside the cavity?. Monthly Notices of the Royal Astronomical Society, 2020, 498, 639-650.	4.4	31
88	Ongoing flyby in the young multiple system UX Tauri. Astronomy and Astrophysics, 2020, 639, L1.	5.1	31
89	Modelling shear flows with smoothed particle hydrodynamics and grid-based methods. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1933-1945.	4.4	30
90	Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the Phantom SPH code. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2766-2771.	4.4	28

#	Article	IF	CITATIONS
91	The effect of extreme ionization rates during the initial collapse of a molecular cloud core. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2063-2074.	4.4	26
92	On the cavity size in circumbinary discs. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2936-2947.	4.4	26
93	Gas squeezing during the merger of a supermassive black hole binary. Monthly Notices of the Royal Astronomical Society, 2016, 457, 939-948.	4.4	24
94	On the origin of magnetic fields in stars. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2450-2457.	4.4	24
95	Hall effect-driven formation of gravitationally unstable discs in magnetized molecular cloud cores. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4434-4442.	4.4	24
96	A dusty filament and turbulent CO spirals in HD 135344B - SAO 206462. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3789-3809.	4.4	24
97	A comparison between grid and particle methods on the small-scale dynamo in magnetized supersonic turbulence. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1260-1275.	4.4	23
98	Binary-induced spiral arms inside the disc cavity of ABÂAurigae. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2362-2371.	4.4	22
99	On the fragmentation boundary in magnetized self-gravitating discs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3406-3416.	4.4	21
100	The theory of kinks – I. A semi-analytic model of velocity perturbations due to planet–disc interaction. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5444-5454.	4.4	21
101	A comparison of the acceleration mechanisms in young stellar objects and active galactic nuclei jets. Monthly Notices of the Royal Astronomical Society, 2003, 339, 1223-1236.	4.4	20
102	Electromagnetic Signatures from the Tidal Tail of a Black Holeâ€"Neutron Star Merger. Astrophysical Journal, 2021, 915, 69.	4.5	19
103	Magnetic field evolution and reversals in spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4482-4495.	4.4	18
104	Planet migration, resonant locking, and accretion streams in PDSÂ70: comparing models and data. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2015-2027.	4.4	18
105	Mapping the Planetary Wake in HD 163296 with Kinematics. Astrophysical Journal Letters, 2022, 929, L25.	8.3	18
106	Does turbulence determine the initial mass function?. Monthly Notices of the Royal Astronomical Society, 2017, 465, 105-110.	4.4	17
107	General relativistic smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2019, 485, 819-842.	4.4	17
108	Is the gap in the DS Tau disc hiding a planet?. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1913-1926.	4.4	17

#	Article	IF	CITATIONS
109	Multi-wavelength observations of protoplanetary discs as a proxy for the gas disc mass. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	16
110	Super-Earths in the TWÂHya disc. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L130-L135.	3.3	16
111	HDÂ143006: circumbinary planet or misaligned disc?. Monthly Notices of the Royal Astronomical Society, 2021, 504, 888-897.	4.4	16
112	On the rise times in FU Orionis events. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 510, L37-L41.	3.3	16
113	Response of a circumbinary accretion disc to black hole mass loss. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1958-1966.	4.4	15
114	Non-Keplerian spirals, a gas-pressure dust trap, and an eccentric gas cavity in the circumbinary disc around HD 142527. Monthly Notices of the Royal Astronomical Society, 2021, 504, 782-791.	4.4	15
115	On the Papaloizou–Pringle instability in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1737-1745.	4.4	14
116	Circumbinary and circumstellar discs around the eccentric binary IRAS 04158+2805 $\hat{a} \in \mathbb{C}$ a testbed for binary $\hat{a} \in \mathbb{C}$ disc interaction. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1157-1174.	4.4	14
117	A solution to the overdamping problem when simulating dust–gas mixtures with smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3929-3934.	4.4	13
118	Formation of eccentric gas discs from sublimating or partially disrupted asteroids orbiting white dwarfs. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 505, L21-L25.	3.3	13
119	Apsidal precession, disc breaking and viscosity in warped discs. Monthly Notices of the Royal Astronomical Society: Letters, 0, , .	3.0	12
120	Discovery of a Low-mass Companion Embedded in the Disk of the Young Massive Star MWC 297 with VLT/SPHERE*. Astrophysical Journal Letters, 2020, 890, L8.	8.3	11
121	Rocking shadows in broken circumbinary discs. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 493, L143-L147.	3.3	11
122	A faint companion around CrA-9: protoplanet or obscured binary?. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6117-6139.	4.4	11
123	A Tale of Two Transition Disks: ALMA Long-baseline Observations of ISO-Oph 2 Reveal Two Closely Packed Nonaxisymmetric Rings and a â°1⁄42 au Cavity. Astrophysical Journal Letters, 2020, 902, L33.	8.3	11
124	Accretion rates in hierarchical triple systems with discs. Monthly Notices of the Royal Astronomical Society, 2022, 514, 906-919.	4.4	11
125	Spirals, shadowsÂ& precession in HDÂ100453 – II. The hidden companion. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3857-3867.	4.4	10
126	Toy Stars in two dimensions. Monthly Notices of the Royal Astronomical Society, 2006, 365, 991-1006.	4.4	9

#	Article	IF	Citations
127	Dust growth, fragmentation, and self-induced dust traps in <scp>phantom</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 507, 2318-2338.	4.4	9
128	Dust traffic jams in inclined circumbinary protoplanetary discs – I. Morphology and formation theory. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2743-2757.	4.4	9
129	On the origin of magnetic fields in stars – II. The effect of numerical resolution. Monthly Notices of the Royal Astronomical Society, 2022, 511, 746-764.	4.4	9
130	Gravitational waves from tidal disruption events: an open and comprehensive catalog. Monthly Notices of the Royal Astronomical Society, 2021, 510, 992-1001.	4.4	7
131	Density Conversion between 1D and 3D Stellar Models with ^{1D} MESA2HYDRO ^{3D} . Astrophysical Journal, 2019, 882, 63.	4.5	6
132	The protoplanetary disc around HD 169142: circumstellar or circumbinary?. Monthly Notices of the Royal Astronomical Society, 2021, 510, 205-215.	4.4	6
133	Toy stars in one dimension. Monthly Notices of the Royal Astronomical Society, 2004, 350, 1449-1456.	4.4	5
134	Stable anisotropic heat conduction in smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4901-4909.	4.4	5
135	Publisher Note: Circumbinary, not transitional: On the spiral arms, cavity, shadows, fast radial flows, streamers and horseshoe in the HD142527 disc. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3169-3169.	4.4	3
136	A smoothed particle hydrodynamics algorithm for multigrain dust with separate sets of particles. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3806-3818.	4.4	3
137	Misaligned snowplough effect and the electromagnetic counterpart to black hole binary mergers. Monthly Notices of the Royal Astronomical Society, 2019, 484, 31-38.	4.4	2
138	3D Meshfree Magnetohydrodynamics. Lecture Notes in Computational Science and Engineering, 2008, , 247-275.	0.3	2
139	Smoothed Particle Magnetohydrodynamics: Some Shocking Results. Astrophysics and Space Science, 2004, 292, 279-283.	1.4	1
140	Using synthetic emission maps to constrain the structure of the Milky Way. Proceedings of the International Astronomical Union, 2013, 9, 246-252.	0.0	1
141	3D Simulation of a Dust-Driven Wind In a Binary System. EAS Publications Series, 2015, 71-72, 173-174.	0.3	1
142	Erratum and Addendum: Smoothed particle magnetohydrodynamic simulations of protostellar outflows with misaligned magnetic field and rotation axes. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2499-2501.	4.4	1
143	Magnetic fields and Turbulence in Star Formation using Smoothed Particle Hydrodynamics. Proceedings of the International Astronomical Union, 2010, 6, 169-177.	0.0	0
144	Magnetic fields and radiative feedback in the star formation process. , 2010, , .		0

#	Article	IF	CITATIONS
145	The small-scale turbulent dynamo in smoothed particle magnetohydrodynamics. Journal of Physics: Conference Series, 2016, 719, 012003.	0.4	0
146	Modelling Magnetised Protostellar Jets with SPH. Thirty Years of Astronomical Discovery With UKIRT, 2014, , 101-104.	0.3	0
147	Planet Formation in the ALMA Era. , 2018, , 155-167.		0