
Dimitri Krainc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4653414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Gaucher Disease Glucocerebrosidase and α-Synuclein Form a Bidirectional Pathogenic Loop in Synucleinopathies. Cell, 2011, 146, 37-52.	28.9	1,097
4	Transcriptional Repression of PGC-1α by Mutant Huntingtin Leads to Mitochondrial Dysfunction and Neurodegeneration. Cell, 2006, 127, 59-69.	28.9	912
5	α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nature Medicine, 2017, 23, 1-13.	30.7	688
6	Sp1 and TAFII130 Transcriptional Activity Disrupted in Early Huntington's Disease. Science, 2002, 296, 2238-2243.	12.6	638
7	Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging. Cell Stem Cell, 2013, 13, 691-705.	11.1	613
8	Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease. Science, 2017, 357, 1255-1261.	12.6	600
9	Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature, 2018, 554, 382-386.	27.8	564
10	Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease. Science Translational Medicine, 2012, 4, 141ra90.	12.4	444
11	Identification and Rescue of α-Synuclein Toxicity in Parkinson Patient–Derived Neurons. Science, 2013, 342, 983-987.	12.6	416
12	Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson's Disease. Cell Stem Cell, 2016, 19, 709-724.	11.1	371
13	Acetylation Targets Mutant Huntingtin to Autophagosomes for Degradation. Cell, 2009, 137, 60-72.	28.9	367
14	Mitochondrial Parkin Recruitment Is Impaired in Neurons Derived from Mutant PINK1 Induced Pluripotent Stem Cells. Journal of Neuroscience, 2011, 31, 5970-5976.	3.6	348
15	α-Synuclein–induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1931-1936.	7.1	292
16	Deficiency of ATP13A2 Leads to Lysosomal Dysfunction, α-Synuclein Accumulation, and Neurotoxicity. Journal of Neuroscience, 2012, 32, 4240-4246.	3.6	245
17	Activation of Â-Glucocerebrosidase Reduces Pathological Â-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. Journal of Neuroscience, 2016, 36, 7693-7706.	3.6	220
18	Synaptic, Mitochondrial, and Lysosomal Dysfunction in Parkinson's Disease. Trends in Neurosciences, 2019, 42, 140-149.	8.6	206

#	Article	IF	CITATIONS
19	Regulation and Function of Mitochondria–Lysosome Membrane Contact Sites in Cellular Homeostasis. Trends in Cell Biology, 2019, 29, 500-513.	7.9	203
20	Phosphatase and Tensin Homolog (PTEN)-induced Putative Kinase 1 (PINK1)-dependent Ubiquitination of Endogenous Parkin Attenuates Mitophagy. Journal of Biological Chemistry, 2013, 288, 2223-2237.	3.4	199
21	Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation. Stem Cell Reports, 2016, 7, 664-677.	4.8	164
22	Mitochondria-lysosome contacts regulate mitochondrial Ca ²⁺ dynamics via lysosomal TRPML1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19266-19275.	7.1	164
23	ATP13A2/PARK9 Regulates Secretion of Exosomes and α-Synuclein. Journal of Neuroscience, 2014, 34, 15281-15287.	3.6	148
24	Identification of TMEM230 mutations in familial Parkinson's disease. Nature Genetics, 2016, 48, 733-739.	21.4	146
25	Zn2+ dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Human Molecular Genetics, 2014, 23, 2791-2801.	2.9	137
26	LRRK2 kinase activity regulates lysosomal glucocerebrosidase in neurons derived from Parkinson's disease patients. Nature Communications, 2019, 10, 5570.	12.8	131
27	Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits. Human Molecular Genetics, 2013, 22, 2067-2082.	2.9	124
28	Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway. Journal of Neuroscience, 2016, 36, 2425-2437.	3.6	115
29	LRRK2 phosphorylation of auxilin mediates synaptic defects in dopaminergic neurons from patients with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5576-5581.	7.1	115
30	LIMP-2 expression is critical for β-glucocerebrosidase activity and α-synuclein clearance. Proceedings of the United States of America, 2014, 111, 15573-15578.	7.1	109
31	Pathogenic effects of novel mutations in the Pâ€type ATPase <i>ATP13A2</i> (<i>PARK9</i>) causing Kuforâ€Rakeb syndrome, a form of earlyâ€onset parkinsonism. Human Mutation, 2011, 32, 956-964.	2.5	105
32	Recessive mutations in <i>VPS13D</i> cause childhood onset movement disorders. Annals of Neurology, 2018, 83, 1089-1095.	5.3	104
33	Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Human Molecular Genetics, 2017, 26, 4861-4872.	2.9	100
34	Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson's disease. Nature Communications, 2021, 12, 1807.	12.8	99
35	Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain. Nature Neuroscience, 2020, 23, 15-20.	14.8	97
36	Increased Lysosomal Exocytosis Induced by Lysosomal Ca ²⁺ Channel Agonists Protects Human Dopaminergic Neurons from α-Synuclein Toxicity. Journal of Neuroscience, 2019, 39, 5760-5772.	3.6	93

#	Article	IF	CITATIONS
37	The Glycolytic Enzyme, GPI, Is a Functionally Conserved Modifier of Dopaminergic Neurodegeneration in Parkinson's Models. Cell Metabolism, 2014, 20, 145-157.	16.2	82
38	Molecular mechanisms of α-synuclein and GBA1 in Parkinson's disease. Cell and Tissue Research, 2018, 373, 51-60.	2.9	77
39	A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson's disease. Science Translational Medicine, 2019, 11, .	12.4	77
40	Identification of novel ATP13A2 interactors and their role in α-synuclein misfolding and toxicity. Human Molecular Genetics, 2012, 21, 3785-3794.	2.9	66
41	Mutant Huntingtin Is Secreted via a Late Endosomal/Lysosomal Unconventional Secretory Pathway. Journal of Neuroscience, 2017, 37, 9000-9012.	3.6	64
42	Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals?. Movement Disorders, 2019, 34, 1406-1422.	3.9	62
43	Lysosomal Regulation of Inter-mitochondrial Contact Fate and Motility in Charcot-Marie-Tooth Type 2. Developmental Cell, 2019, 50, 339-354.e4.	7.0	59
44	Astrocytes Protect Human Dopaminergic Neurons from α-Synuclein Accumulation and Propagation. Journal of Neuroscience, 2020, 40, 8618-8628.	3.6	57
45	Acid ceramidase inhibition ameliorates α-synuclein accumulation upon loss of GBA1 function. Human Molecular Genetics, 2018, 27, 1972-1988.	2.9	53
46	Preserving Lysosomal Function in the Aging Brain: Insights from Neurodegeneration. Neurotherapeutics, 2019, 16, 611-634.	4.4	52
47	Iron overload is accompanied by mitochondrial and lysosomal dysfunction in WDR45 mutant cells. Brain, 2018, 141, 3052-3064.	7.6	51
48	Inhibition of PIP4K \hat{I}^3 ameliorates the pathological effects of mutant huntingtin protein. ELife, 2017, 6, .	6.0	49
49	Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. Human Molecular Genetics, 2020, 29, 716-726.	2.9	48
50	Lysosomal trafficking defects link Parkinson's disease with Gaucher's disease. Movement Disorders, 2016, 31, 1610-1618.	3.9	47
51	Characterization of the complex formed by β-glucocerebrosidase and the lysosomal integral membrane protein type-2. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3791-3796.	7.1	45
52	Lysosomal integral membrane protein-2 as a phospholipid receptor revealed by biophysical and cellular studies. Nature Communications, 2017, 8, 1908.	12.8	43
53	The Convergence of Alpha-Synuclein, Mitochondrial, and Lysosomal Pathways in Vulnerability of Midbrain Dopaminergic Neurons in Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 580634.	3.7	40
54	Clearance of Mutant Proteins as a Therapeutic Target in Neurodegenerative Diseases. Archives of Neurology, 2010, 67, 388-92.	4.5	39

#	Article	IF	CITATIONS
55	Evidence of TAF1 dysfunction in peripheral models of X-linked dystonia-parkinsonism. Cellular and Molecular Life Sciences, 2016, 73, 3205-3215.	5.4	37
56	Emerging links between pediatric lysosomal storage diseases and adult parkinsonism. Movement Disorders, 2019, 34, 614-624.	3.9	37
57	Gelator Length Precisely Tunes Supramolecular Hydrogel Stiffness and Neuronal Phenotype in 3D Culture. ACS Biomaterials Science and Engineering, 2020, 6, 1196-1207.	5.2	36
58	Assessing the relationship between monoallelic <i>PRKN</i> mutations and Parkinson's risk. Human Molecular Genetics, 2021, 30, 78-86.	2.9	36
59	The Parkinson's disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Human Molecular Genetics, 2017, 26, ddw413.	2.9	35
60	β-Glucocerebrosidase Modulators Promote Dimerization of β-Glucocerebrosidase and Reveal an Allosteric Binding Site. Journal of the American Chemical Society, 2018, 140, 5914-5924.	13.7	29
61	Detection of Free and Protein-Bound <i>ortho</i> -Quinones by Near-Infrared Fluorescence. Analytical Chemistry, 2016, 88, 2399-2405.	6.5	26
62	Genome-wide Association and Meta-analysis of Age at Onset in Parkinson Disease. Neurology, 2022, 99, .	1.1	25
63	A patient-based model of RNA mis-splicing uncovers treatment targets in Parkinson's disease. Science Translational Medicine, 2020, 12, .	12.4	24
64	Lysosomal Proteins as a Therapeutic Target in Neurodegeneration. Annual Review of Medicine, 2017, 68, 445-458.	12.2	23
65	Evaluation of Strategies for Measuring Lysosomal Glucocerebrosidase Activity. Movement Disorders, 2021, 36, 2719-2730.	3.9	22
66	Organoid and pluripotent stem cells in Parkinson's disease modeling: an expert view on their value to drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 427-441.	5.0	21
67	Mendelian Randomisation Study of Smoking, Alcohol, and Coffee Drinking in Relation to Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, 267-282.	2.8	21
68	Micropatterning Facilitates the Longâ€Term Growth and Analysis of iPSCâ€Derived Individual Human Neurons and Neuronal Networks. Advanced Healthcare Materials, 2016, 5, 1894-1903.	7.6	18
69	Biallelic variants in TSPOAP1, encoding the active-zone protein RIMBP1, cause autosomal recessive dystonia. Journal of Clinical Investigation, 2021, 131, .	8.2	18
70	Development of targeted therapies for Parkinson's disease and related synucleinopathies. Journal of Lipid Research, 2014, 55, 1996-2003.	4.2	17
71	Design and Synthesis of Potent Quinazolines as Selective β-Glucocerebrosidase Modulators. Journal of Medicinal Chemistry, 2016, 59, 8508-8520.	6.4	16
72	Conversion of Quinazoline Modulators from Inhibitors to Activators of β-Glucocerebrosidase. Journal of Medicinal Chemistry, 2019, 62, 1218-1230.	6.4	16

Dimitri Krainc

#	Article	IF	CITATIONS
73	Dairy Intake and Parkinson's Disease: A Mendelian Randomization Study. Movement Disorders, 2022, 37, 857-864.	3.9	15
74	<scp><i>MED27</i></scp> Variants Cause Developmental Delay, Dystonia, and Cerebellar Hypoplasia. Annals of Neurology, 2021, 89, 828-833.	5.3	14
75	Heterozygous GBA D409V and ATP13a2 mutations do not exacerbate pathological α-synuclein spread in the prodromal preformed fibrils model in young mice. Neurobiology of Disease, 2021, 159, 105513.	4.4	14
76	A <i>PDE10A</i> de novo mutation causes childhoodâ€onset chorea with diurnal fluctuations. Movement Disorders, 2017, 32, 1646-1647.	3.9	13
77	BACE1-cleavage of Sez6 and Sez6L is elevated in Niemann-Pick type C disease mouse brains. PLoS ONE, 2018, 13, e0200344.	2.5	13
78	The role of dopamine in the pathogenesis of GBA1-linked Parkinson's disease. Neurobiology of Disease, 2019, 132, 104545.	4.4	13
79	Dominant mutations in MIEF1 affect mitochondrial dynamics and cause a singular late onset optic neuropathy. Molecular Neurodegeneration, 2021, 16, 12.	10.8	13
80	Dysregulation of organelle membrane contact sites in neurological diseases. Neuron, 2022, 110, 2386-2408.	8.1	12
81	Functional assays for the assessment of the pathogenicity of variants in GOSR2, an ER-to-Golgi SNARE involved in progressive myoclonus epilepsies. DMM Disease Models and Mechanisms, 2017, 10, 1391-1398.	2.4	11
82	Fluctuations in cell density alter protein markers of multiple cellular compartments, confounding experimental outcomes. PLoS ONE, 2019, 14, e0211727.	2.5	11
83	Lysosomal ceramides regulate cathepsin B-mediated processing of saposin C and glucocerebrosidase activity. Human Molecular Genetics, 2022, 31, 2424-2437.	2.9	11
84	Identification of ASCL1 as a determinant for human iPSC-derived dopaminergic neurons. Scientific Reports, 2021, 11, 22257.	3.3	10
85	Challenges to neurology residency education in today's health care environment. Annals of Neurology, 2016, 80, 315-320.	5.3	9
86	Long-term Clinical Outcomes After Fetal Cell Transplantation in Parkinson Disease. JAMA - Journal of the American Medical Association, 2014, 311, 617.	7.4	8
87	Alzheimer Gene <i>APOE</i> ε4 Linked to Brain Development in Infants. JAMA - Journal of the American Medical Association, 2014, 311, 298.	7.4	8
88	Pharmacological Upregulation of PGC1α in Oligodendrocytes: Implications for Huntington's Disease. Journal of Huntington's Disease, 2013, 2, 101-105.	1.9	7
89	Direct targeting of wild-type glucocerebrosidase by antipsychotic quetiapine improves pathogenic phenotypes in Parkinson's disease models. JCI Insight, 2021, 6, .	5.0	6
90	Untangling alpha synuclein fibrils by graphene quantum dots. Movement Disorders, 2018, 33, 1673-1673.	3.9	4

#	Article	IF	CITATIONS
91	Modeling Brain Pathology of <scp>Niemannâ€Pick</scp> Disease Type C Using Patientâ€Derived Neurons. Movement Disorders, 2021, 36, 1022-1027.	3.9	4
92	Clucocerebrosidase dysfunction in neurodegenerative disease. Essays in Biochemistry, 2021, 65, 873-883.	4.7	4
93	Mutant Huntingtin Secretion in Neuro2A Cells and Rat Primary Cortical Neurons. Bio-protocol, 2018, 8, .	0.4	4
94	Replication assessment of NUS1 variants in Parkinson's disease. Neurobiology of Aging, 2021, 101, 300.e1-300.e3.	3.1	3
95	Translating new research findings into clinical practice. Nature Reviews Neurology, 2012, 8, 65-66.	10.1	2
96	Transcriptional Abnormalities in Huntington's Disease. , 2006, , 417-440.		1
97	Human Neuron Cultures: Micropatterning Facilitates the Longâ€Term Growth and Analysis of iPSCâ€Derived Individual Human Neurons and Neuronal Networks (Adv. Healthcare Mater. 15/2016). Advanced Healthcare Materials, 2016, 5, 1893-1893.	7.6	0
98	High priority publications on Parkinson's disease in 2017. Lancet Neurology, The, 2018, 17, 8-10.	10.2	0
99	Novel Approach to Tracking Mutant Huntingtin in Biosamples. Trends in Molecular Medicine, 2018, 24, 978-981.	6.7	0