Yuin-Han Loh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4653152/publications.pdf

Version: 2024-02-01

126858 16,541 61 33 citations h-index papers

g-index 66 66 66 20403 docs citations times ranked citing authors all docs

128225

60

#	Article	IF	CITATIONS
1	H3.3 safeguards haematopoietic ERV-quilibrium. Nature Cell Biology, 2022, 24, 7-9.	4.6	O
2	SETDB1 acts as a topological accessory to Cohesin via an H3K9me3-independent, genomic shunt for regulating cell fates. Nucleic Acids Research, 2022, 50, 7326-7349.	6.5	8
3	Novel live cell fluorescent probe for human-induced pluripotent stem cells highlights early reprogramming population. Stem Cell Research and Therapy, 2021, 12, 113.	2.4	4
4	Chromatin Regulation in Development: Current Understanding and Approaches. Stem Cells International, 2021, 2021, 1-12.	1.2	5
5	Multi-species single-cell transcriptomic analysis of ocular compartment regulons. Nature Communications, 2021, 12, 5675.	5.8	48
6	Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility. Genome Research, 2020, 30, 1027-1039.	2.4	52
7	Ascorbate and Iron Are Required for the Specification and Long-Term Self-Renewal of Human Skeletal Mesenchymal Stromal Cells. Stem Cell Reports, 2020, 14, 210-225.	2.3	17
8	Unraveling Heterogeneity in Transcriptome and Its Regulation Through Single-Cell Multi-Omics Technologies. Frontiers in Genetics, 2020, 11, 662.	1.1	18
9	Defining Essential Enhancers for Pluripotent Stem Cells Using a Features-Oriented CRISPR-Cas9 Screen. Cell Reports, 2020, 33, 108309.	2.9	6
10	Diversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencing. Science Advances, 2020, 6, .	4.7	37
11	Reâ€entering the pluripotent state from blood lineage: promises and pitfalls of blood reprogramming. FEBS Letters, 2019, 593, 3244-3252.	1.3	2
12	Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nature Communications, 2019, 10, 34.	5.8	104
13	Global H3.3 dynamic deposition defines its bimodal role in cell fate transition. Nature Communications, 2018, 9, 1537.	5.8	49
14	Defined Serumâ€Free Medium for Bioreactor Culture of an Immortalized Human Erythroblast Cell Line. Biotechnology Journal, 2018, 13, e1700567.	1.8	13
15	Improved erythroid differentiation of multiple human pluripotent stem cell lines in microcarrier culture by modulation of Wnt/ \hat{l}^2 -Catenin signaling. Haematologica, 2018, 103, e279-e283.	1.7	9
16	Review: In vitro generation of red blood cells for transfusion medicine: Progress, prospects and challenges. Biotechnology Advances, 2018, 36, 2118-2128.	6.0	28
17	Regulation of ERVs in pluripotent stem cells and reprogramming. Current Opinion in Genetics and Development, 2017, 46, 194-201.	1.5	13
18	PRDM15 safeguards naive pluripotency by transcriptionally regulating WNT and MAPK–ERK signaling. Nature Genetics, 2017, 49, 1354-1363.	9.4	39

#	Article	IF	Citations
19	Superior Red Blood Cell Generation from Human Pluripotent Stem Cells Through a Novel Microcarrier-Based Embryoid Body Platform. Tissue Engineering - Part C: Methods, 2016, 22, 765-780.	1.1	14
20	Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nature Methods, 2016, 13, 833-836.	9.0	158
21	Derivation of Transgene-Free Induced Pluripotent Stem Cells from a Single Drop of Blood. , 2016, 38, 4A.9.1-4A.9.10.		4
22	Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors. Nature Communications, 2016, 7, 13396.	5 . 8	22
23	Cops2 promotes pluripotency maintenance by Stabilizing Nanog Protein and Repressing Transcription. Scientific Reports, 2016, 6, 26804.	1.6	16
24	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell, 2016, 19, 66-80.	5.2	278
25	RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming. Cell Reports, 2016, 15, 2597-2607.	2.9	47
26	Telomerase reverse transcriptase promotes cancer cell proliferation by augmenting tRNA expression. Journal of Clinical Investigation, 2016, 126, 4045-4060.	3.9	109
27	Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. International Journal of Molecular Sciences, 2015, 16, 28614-28634.	1.8	19
28	Systematic Identification of Factors for Provirus Silencing in Embryonic Stem Cells. Cell, 2015, 163, 230-245.	13.5	162
29	RING1B O-GlcNAcylation regulates gene targeting of polycomb repressive complex 1 in human embryonic stem cells. Stem Cell Research, 2015, 15, 182-189.	0.3	28
30	Gene Networks of Fully Connected Triads with Complete Auto-Activation Enable Multistability and Stepwise Stochastic Transitions. PLoS ONE, 2014, 9, e102873.	1.1	35
31	Zfp322a Regulates Mouse ES Cell Pluripotency and Enhances Reprogramming Efficiency. PLoS Genetics, 2014, 10, e1004038.	1.5	21
32	Human Finger-Prick Induced Pluripotent Stem Cells Facilitate the Development of Stem Cell Banking. Stem Cells Translational Medicine, 2014, 3, 586-598.	1.6	41
33	Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 92-101.	5. 2	93
34	Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates. Cardiovascular Research, 2012, 96, 391-400.	1.8	77
35	Accessing na $ ilde{A}$ -ve human pluripotency. Current Opinion in Genetics and Development, 2012, 22, 272-282.	1.5	92
36	Euchromatin islands in large heterochromatin domains are enriched for CTCF binding and differentially DNA-methylated regions. BMC Genomics, 2012, 13, 566.	1.2	40

#	Article	IF	Citations
37	Cellular Reprogramming: A New Technology Frontier in Pharmaceutical Research. Pharmaceutical Research, 2012, 29, 35-52.	1.7	10
38	Excision of a Viral Reprogramming Cassette by Delivery of Synthetic Cre mRNA. Current Protocols in Stem Cell Biology, 2012, 21, Unit4A.5.	3.0	17
39	Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 1117-1119.	9.4	547
40	Genomic Approaches to Deconstruct Pluripotency. Annual Review of Genomics and Human Genetics, 2011, 12, 165-185.	2.5	33
41	Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011, 471, 63-67.	13.7	1,147
42	Reproductive medicine gets a new tool. Journal of Molecular Cell Biology, 2011, 3, 320-321.	1.5	5
43	Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature, 2010, 464, 292-296.	13.7	302
44	Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nature Genetics, 2010, 42, 1113-1117.	9.4	902
45	Reprogramming of T Cells from Human Peripheral Blood. Cell Stem Cell, 2010, 7, 15-19.	5.2	288
46	Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA. Cell Stem Cell, 2010, 7, 618-630.	5.2	2,368
47	Generation of induced pluripotent stem cells from human blood. Blood, 2009, 113, 5476-5479.	0.6	559
48	Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes and Development, 2009, 23, 2507-2520.	2.7	218
49	Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nature Biotechnology, 2009, 27, 1033-1037.	9.4	445
50	Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nature Cell Biology, 2009, 11, 197-203.	4.6	428
51	Telomere Elongation in Dyskeratosis Congenita Induced Pluripotent Stem Cells Blood, 2009, 114, 497-497.	0.6	1
52	A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biology, 2008, 10, 353-360.	4.6	678
53	Transcriptional and epigenetic regulations of embryonic stem cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 647, 52-58.	0.4	20
54	Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells. Cell, 2008, 133, 1106-1117.	13.5	2,279

Yuin-Han Loh

#	Article	IF	CITATIONS
55	Molecular framework underlying pluripotency. Cell Cycle, 2008, 7, 885-891.	1.3	55
56	Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes and Development, 2007, 21, 2545-2557.	2.7	447
57	Zic3 Is Required for Maintenance of Pluripotency in Embryonic Stem Cells. Molecular Biology of the Cell, 2007, 18, 1348-1358.	0.9	121
58	The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 2006, 38, 431-440.	9.4	2,162
59	Sall4 Interacts with Nanog and Co-occupies Nanog Genomic Sites in Embryonic Stem Cells. Journal of Biological Chemistry, 2006, 281, 24090-24094.	1.6	253
60	Reciprocal Transcriptional Regulation of Pou5f1 and Sox2 via the Oct4/Sox2 Complex in Embryonic Stem Cells. Molecular and Cellular Biology, 2005, 25, 6031-6046.	1.1	599
61	Transcriptional Regulation of Nanog by OCT4 and SOX2. Journal of Biological Chemistry, 2005, 280, 24731-24737.	1.6	942