
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4650515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corrosion Resistance and Durability of Superhydrophobic Surface Formed on Magnesium Alloy Coated with Nanostructured Cerium Oxide Film and Fluoroalkylsilane Molecules in Corrosive NaCl Aqueous Solution. Langmuir, 2011, 27, 4780-4788.	3.5	306
2	Formation and Photocatalytic Application of ZnO Nanotubes Using Aqueous Solution. Langmuir, 2010, 26, 2811-2815.	3.5	259
3	Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution. Journal of Materials Chemistry, 2003, 13, 608-613.	6.7	256
4	The effect of surface charge on hydroxyapatite nucleation. Biomaterials, 2004, 25, 3915-3921.	11.4	161
5	Light-Excited Superhydrophilicity of Amorphous TiO2Thin Films Deposited in an Aqueous Peroxotitanate Solution. Langmuir, 2004, 20, 3188-3194.	3.5	157
6	Electrodeposition of WO 3 nanostructured thin films for electrochromic and H 2 S gas sensor applications. Journal of Alloys and Compounds, 2017, 719, 71-81.	5.5	145
7	Thermoelectric performance of Bi- and Na-substituted Ca3Co4O9 improved through ceramic texturing. Journal of Materials Chemistry, 2003, 13, 1094-1099.	6.7	144
8	Acidâ^'Base Properties and Zeta Potentials of Self-Assembled Monolayers Obtained via in Situ Transformationsâ€. Langmuir, 2004, 20, 8693-8698.	3.5	130
9	Site-Selective Deposition and Morphology Control of UV- and Visible-Light-Emitting ZnO Crystals. Crystal Growth and Design, 2006, 6, 75-78.	3.0	120
10	Deposition Mechanism of Anatase TiO2on Self-Assembled Monolayers from an Aqueous Solution. Chemistry of Materials, 2003, 15, 2469-2476.	6.7	119
11	Surface Precipitation of Highly Porous Hydrotalcite-like Film on Al from a Zinc Aqueous Solution. Langmuir, 2006, 22, 3521-3527.	3.5	114
12	TiO2 nanoparticles prepared using an aqueous peroxotitanate solution. Ceramics International, 2004, 30, 1365-1368.	4.8	111
13	Low-Dimensional Arrangement of SiO2Particles. Langmuir, 2002, 18, 4155-4159.	3.5	110
14	Room-Temperature Preparation of ZrO2 Precursor Thin Film in an Aqueous Peroxozirconium-Complex Solution. Chemistry of Materials, 2004, 16, 2615-2622.	6.7	110
15	Templated Site-Selective Deposition of Titanium Dioxide on Self-Assembled Monolayers. Chemistry of Materials, 2002, 14, 1236-1241.	6.7	105
16	Recent advances in SnO2 nanostructure based gas sensors. Sensors and Actuators B: Chemical, 2022, 364, 131876.	7.8	103
17	Selective deposition and micropatterning of titanium dioxide thin film on self-assembled monolayers. Thin Solid Films, 2001, 382, 153-157.	1.8	102
18	SnO ₂ Nanosheets for Selective Alkene Gas Sensing. ACS Applied Nano Materials, 2019, 2, 1820-1827.	5.0	92

#	Article	IF	CITATIONS
19	Self-Assembly Patterning of Silica Colloidal Crystals. Langmuir, 2005, 21, 4478-4481.	3.5	90
20	Pyrolysis study of poly(vinyl chloride)–metal oxide mixtures: Quantitative product analysis and the chlorine fixing ability of metal oxides. Journal of Analytical and Applied Pyrolysis, 2006, 77, 159-168.	5.5	88
21	Corrosion Resistant Performances of Alkanoic and Phosphonic Acids Derived Self-Assembled Monolayers on Magnesium Alloy AZ31 by Vapor-Phase Method. Langmuir, 2011, 27, 6009-6017.	3.5	88
22	Electrochemical deposition of ZnO film and its photoluminescence properties. Journal of Crystal Growth, 2006, 286, 445-450.	1.5	85
23	Improvement of sensing properties for SnO2 gas sensor by tuning of exposed crystal face. Sensors and Actuators B: Chemical, 2019, 296, 126655.	7.8	84
24	Site-Selective Deposition of Anatase TiO2in an Aqueous Solution Using a Seed Layer. Langmuir, 2003, 19, 4415-4419.	3.5	81
25	Controlled growth of single-crystalline, nanostructured dendrites and snowflakes of α-Fe ₂ O ₃ : influence of the surfactant on the morphology and investigation of morphology dependent magnetic properties. CrystEngComm, 2010, 12, 373-382.	2.6	81
26	Site-Selective Deposition and Micropatterning of SrTiO3Thin Film on Self-Assembled Monolayers by the Liquid Phase Deposition Method. Chemistry of Materials, 2002, 14, 5006-5014.	6.7	80
27	Structure and Thermoelectric Transport Properties of Isoelectronically Substituted (ZnO)5In2O3. Journal of Solid State Chemistry, 2000, 150, 221-227.	2.9	79
28	Catalyst-free Highly Sensitive SnO ₂ Nanosheet Gas Sensors for Parts per Billion-Level Detection of Acetone. ACS Applied Materials & Interfaces, 2020, 12, 51637-51644.	8.0	79
29	Micropatterning of Copper on a Poly(ethylene terephthalate) Substrate Modified with a Self-Assembled Monolayer. Langmuir, 2006, 22, 332-337.	3.5	77
30	Growth of Highly <i>c</i> -Axis-Oriented ZnO Nanorods on ZnO/Glass Substrate: Growth Mechanism, Structural, and Optical Properties. Journal of Physical Chemistry C, 2009, 113, 14715-14720.	3.1	77
31	Self-Assembly and Micropatterning of Spherical-Particle Assemblies. Advanced Materials, 2005, 17, 841-845.	21.0	74
32	A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces. Thin Solid Films, 2006, 503, 110-114.	1.8	70
33	Site-Selective Deposition of Magnetite Particulate Thin Films on Patterned Self-assembled Monolayers. Chemistry of Materials, 2004, 16, 3484-3488.	6.7	69
34	Control over Film Thickness of SnO2Ultrathin Film Selectively Deposited on a Patterned Self-Assembled Monolayer. Langmuir, 2002, 18, 10379-10385.	3.5	68
35	Micropatterning of anatase TiO2 thin films from an aqueous solution by a site-selective immersion method. Journal of Materials Chemistry, 2002, 12, 2643-2647.	6.7	68
36	Two-Dimensional Self-Assembly of Spherical Particles Using a Liquid Mold and Its Drying Process. Langmuir, 2003, 19, 5179-5183.	3.5	68

#	Article	IF	CITATIONS
37	Highly mesoporous α-Fe2O3nanostructures: preparation, characterization and improved photocatalytic performance towards Rhodamine B (RhB). Journal Physics D: Applied Physics, 2010, 43, 015501.	2.8	67
38	Reliable Monolayer-Template Patterning of SnO2 Thin Films from Aqueous Solution and Their Hydrogen-Sensing Properties. Advanced Functional Materials, 2004, 14, 580-588.	14.9	66
39	Size-Dependent Color Tuning of Efficiently Luminescent Germanium Nanoparticles. Langmuir, 2013, 29, 7401-7410.	3.5	66
40	Investigation of Apatite Deposition onto Charged Surfaces in Aqueous Solutions Using a Quartz rystal Microbalance. Journal of the American Ceramic Society, 2003, 86, 782-790.	3.8	65
41	Micropatterning of TiO2 Thin Film in an Aqueous Peroxotitanate Solution. Chemistry of Materials, 2004, 16, 1062-1067.	6.7	64
42	Enhanced photocatalytic activity of cobalt-doped CeO2 nanorods. Journal of Sol-Gel Science and Technology, 2012, 64, 515-523.	2.4	63
43	Hybrid White Light Emitting Diode Based on Silicon Nanocrystals. Advanced Functional Materials, 2014, 24, 7151-7160.	14.9	63
44	Self-Assembly Patterning of Colloidal Crystals Constructed from Opal Structure or NaCl Structure. Langmuir, 2004, 20, 5588-5592.	3.5	61
45	High <i>c</i> -Axis Oriented Stand-Alone ZnO Self-Assembled Film. Crystal Growth and Design, 2008, 8, 275-279.	3.0	61
46	Synthesis and phase transformation of TiO2 nano-crystals in aqueous solutions. Journal of the Ceramic Society of Japan, 2009, 117, 373-376.	1.1	61
47	Liquid-Phase Patterning and Microstructure of Anatase TiO2 Films on SnO2:F Substrates Using Superhydrophilic Surface. Chemistry of Materials, 2008, 20, 1057-1063.	6.7	58
48	Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection. Surface and Coatings Technology, 2013, 217, 76-83.	4.8	58
49	Seedless micropatterning of copper by electroless deposition on self-assembled monolayers. Journal of Materials Chemistry, 2004, 14, 976.	6.7	57
50	Site-Selective Deposition and Micropatterning of Visible-Light-Emitting Europium-Doped Yttrium Oxide Thin Film on Self-Assembled Monolayers. Chemistry of Materials, 2007, 19, 1002-1008.	6.7	57
51	Selective Deposition and Micropatterning of Titanium Dioxide on Self-Assembled Monolayers from a Gas Phase. Langmuir, 2001, 17, 4876-4880.	3.5	56
52	Multineedle TiO ₂ Nanostructures, Self-Assembled Surface Coatings, and Their Novel Properties. Crystal Growth and Design, 2010, 10, 913-922.	3.0	56
53	Influence of ionic size of rare-earth site on the thermoelectric properties of RCoO3-type perovskite cobalt oxides. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 70-75.	3.5	55
54	Thermoelectric Performance of Yttrium-substituted (ZnO)5In2O3Improved through Ceramic Texturing. Japanese Journal of Applied Physics, 2002, 41, 731-732.	1.5	55

#	Article	IF	CITATIONS
55	Site-Selective Adhesion of Hydroxyapatite Microparticles on Charged Surfaces in a Supersaturated Solution. Journal of Colloid and Interface Science, 2001, 243, 31-36.	9.4	54
56	Synthesis of hierarchical WO ₃ nanostructured thin films with enhanced electrochromic performance for switchable smart windows. RSC Advances, 2015, 5, 96416-96427.	3.6	54
57	Nano/micro-patterning of anatase TiO2thin film from an aqueous solution by site-selective elimination method. Science and Technology of Advanced Materials, 2003, 4, 461-467.	6.1	52
58	Fabrication of Self-Assembled Monolayers (SAMs) and Inorganic Micropattern on Flexible Polymer Substrate. Langmuir, 2004, 20, 3278-3283.	3.5	52
59	Effect of Crystal Defect on Gas Sensing Properties of Co ₃ O ₄ Nanoparticles. ACS Sensors, 2020, 5, 1665-1673.	7.8	52
60	Microstructure-Controlled Deposition of SrTiO3Thin Film on Self-Assembled Monolayers in an Aqueous Solution of (NH4)2TiF6â~'Sr(NO3)2â~'H3BO3. Chemistry of Materials, 2003, 15, 2399-2410.	6.7	50
61	Tin Oxide Nanosheet Assembly for Hydrophobic/Hydrophilic Coating and Cancer Sensing. ACS Applied Materials & Interfaces, 2012, 4, 1666-1674.	8.0	50
62	Micropatterning of ZnO Nanoarrays by Forced Hydrolysis of Anhydrous Zinc Acetate. Langmuir, 2008, 24, 7614-7617.	3.5	49
63	In2O3–SnO2 nano-toasts and nanorods: Precipitation preparation, formation mechanism, and gas sensitive properties. Sensors and Actuators B: Chemical, 2009, 137, 630-636.	7.8	48
64	Influence of fluorine substitution on the morphology and structure ofÂhydroxyapatite nanocrystals prepared by hydrothermal method. Materials Chemistry and Physics, 2013, 137, 967-976.	4.0	48
65	Arrangement of Nanosized Ceramic Particles on Self-Assembled Monolayers. Japanese Journal of Applied Physics, 2000, 39, 4596-4600.	1.5	47
66	A novel process to form a silica-like thin layer on polyethylene terephthalate film and its application for gas barrier. Thin Solid Films, 2005, 473, 351-356.	1.8	47
67	Site-selective deposition and micropatterning of tantalum oxide thin films using a monolayer. Journal of the European Ceramic Society, 2004, 24, 301-307.	5.7	45
68	Fabrication of Super-Site-Selective TiO2 Micropattern on a Flexible Polymer Substrate Using a Barrier-Effect Self-Assembly Process. Advanced Materials, 2004, 16, 1461-1464.	21.0	45
69	Aqueous Synthesis of ZnO Rod Arrays for Molecular Sensor. Crystal Growth and Design, 2009, 9, 3083-3088.	3.0	45
70	SnO2 Nanosheet/Nanoparticle Detector for the Sensing of 1-Nonanal Gas Produced by Lung Cancer. Scientific Reports, 2015, 5, 10122.	3.3	45
71	Growth and electrical properties of ZnO films prepared by chemical bath deposition method. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 718-723.	1.8	44
72	Morphology Control of Zinc Oxide Particles at Low Temperature. Crystal Growth and Design, 2008, 8, 2633-2637.	3.0	42

#	Article	IF	CITATIONS
73	Dissolutionâ^'Recrystallization Induced Hierarchical Structure in ZnO: Bunched Roselike and Coreâ^'Shell-like Particles. Crystal Growth and Design, 2010, 10, 626-631.	3.0	42
74	High performance acetone gas sensor based on ultrathin porous NiO nanosheet. Sensors and Actuators B: Chemical, 2022, 367, 132143.	7.8	42
75	Nanocrystal Assembled TiO2 Particles Prepared from Aqueous Solution. Crystal Growth and Design, 2008, 8, 3213-3218.	3.0	41
76	Synthesis and in-depth analysis of highly ordered yttrium doped hydroxyapatite nanorods prepared by hydrothermal method and its mechanical analysis. Materials Characterization, 2011, 62, 1109-1115.	4.4	39
77	Aqueous synthesis of nanosheet assembled tin oxide particles and their N2 adsorption characteristics. Journal of Crystal Growth, 2009, 311, 593-596.	1.5	38
78	Morphology control of ZnO crystalline particles in aqueous solution. Electrochimica Acta, 2007, 53, 171-174.	5.2	37
79	Fabrication and H ₂ -Sensing Properties of SnO ₂ Nanosheet Gas Sensors. ACS Omega, 2018, 3, 14592-14596.	3.5	37
80	Transitionâ€Metalâ€Doped NIRâ€Emitting Silicon Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 6157-6160.	13.8	35
81	Anatase TiO2 films crystallized on SnO2:F substrates in an aqueous solution. Thin Solid Films, 2008, 516, 2547-2552.	1.8	34
82	Shape-Controlled Growth of In(OH) ₃ /In ₂ O ₃ Nanostructures by Electrodeposition. Langmuir, 2010, 26, 14814-14820.	3.5	33
83	Fast synthesis, optical and bio-sensor properties of SnO2 nanostructures by electrochemical deposition. Chemical Engineering Journal, 2011, 168, 955-958.	12.7	33
84	Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors. Materials Chemistry and Physics, 2012, 133, 47-54.	4.0	33
85	Two-dimensional arrangement of fine silica spheres on self-assembled monolayers. Thin Solid Films, 2001, 382, 183-189.	1.8	32
86	Superhydrophobic and H ₂ S gas sensing properties of CuO nanostructured thin films through a successive ionic layered adsorption reaction process. RSC Advances, 2016, 6, 24290-24298.	3.6	32
87	Site-Selective Deposition of In2O3 Using a Self-Assembled Monolayer. Crystal Growth and Design, 2009, 9, 555-561.	3.0	31
88	Superhydrophobic Ag decorated ZnO nanostructured thin film as effective surface enhanced Raman scattering substrates. Applied Surface Science, 2015, 355, 969-977.	6.1	31
89	Photoluminescence from ZnO Nanoparticles Embedded in an Amorphous Matrix. Crystal Growth and Design, 2008, 8, 1503-1508.	3.0	30
90	Liquid phase formation of alkyl- and perfluoro-phosphonic acid derived monolayers on magnesium alloy AZ31 and their chemical properties. Journal of Colloid and Interface Science, 2011, 360, 280-288.	9.4	30

#	Article	IF	CITATIONS
91	Anisotropic Thermoelectric Properties of Crystal-Axis Oriented Ceramics of Layer-Structured Oxide in the Ca-Co-O System Journal of the Ceramic Society of Japan, 2001, 109, 647-650.	1.3	29
92	Preparation of SrTiO3 thin films by the liquid phase deposition method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 99, 290-293.	3.5	29
93	Deposition mechanism of anatase TiO2 from an aqueous solution and its site-selective deposition. Solid State Ionics, 2004, 172, 283-288.	2.7	28
94	Deposition of Î ³ -FeOOH, Fe3O4 and Fe on Pd-catalyzed substrates. Journal of Crystal Growth, 2005, 284, 176-183.	1.5	28
95	Exfoliation of Layers in Na _{<i>x</i>} CoO ₂ . Journal of Nanoscience and Nanotechnology, 2006, 6, 1632-1638.	0.9	28
96	Ca-doped HoCoO3 as p-type oxide thermoelectric material. Materials Letters, 2001, 48, 225-229.	2.6	27
97	Emerging Atomic Energy Levels in Zero-Dimensional Silicon Quantum Dots. Nano Letters, 2020, 20, 1491-1498.	9.1	27
98	Flexible Solar-Cell from Zinc Oxide Nanocrystalline Sheets Self-Assembled by an <1>In-Situ Electrodeposition Process. Journal of Nanoscience and Nanotechnology, 2006, 6, 1797-1801.	0.9	26
99	Room Temperature CVD of TiO ₂ Thin Films and Their Electronic Properties. Science of Advanced Materials, 2009, 1, 138-143.	0.7	26
100	Site-Selective Deposition and Micropatterning of Zirconia Thin Films on Templates of Self-Assembled Monolayers. Journal of the Ceramic Society of Japan, 2002, 110, 379-385.	1.3	25
101	Micropatterning of Ni particles on a BaTiO3 green sheet using a self-assembled monolayer. Journal of Colloid and Interface Science, 2003, 263, 190-195.	9.4	25
102	Facile Synthesis, Characterization of ZnO Nanotubes and Nanoflowers in an Aqueous Solution. Journal of the American Ceramic Society, 2010, 93, 887-893.	3.8	25
103	Superhydrophilic SnO2 nanosheet-assembled film. Thin Solid Films, 2013, 544, 567-570.	1.8	25
104	Liquid Phase Patterning of Ceramics(Review). Journal of the Ceramic Society of Japan, 2007, 115, 101-109.	1.3	24
105	Effect of calcium doping on LaCoO3 prepared by Pechini method. Powder Technology, 2013, 235, 140-147.	4.2	24
106	Synthesis and structure refinement studies of LiNiVO4 electrode material for lithium rechargeable batteries. Ionics, 2013, 19, 17-23.	2.4	24
107	Nano/Micro Patterning of Inorganic Thin Films. Bulletin of the Chemical Society of Japan, 2008, 81, 1337-1376.	3.2	23
108	Highly Enhanced Surface Area of Tin Oxide Nanocrystals. Journal of the American Ceramic Society, 2010, 93, 2140-2143.	3.8	23

YOSHITAKE MASUDA

#	Article	IF	CITATIONS
109	Preparation of surface-modified mesoporous silica membranes and separation mechanism of their pervaporation properties. Desalination, 2011, 280, 139-145.	8.2	23
110	Micropatterning of lanthanum-based oxide thin film on self-assembled monolayers. Journal of Colloid and Interface Science, 2004, 274, 392-397.	9.4	22
111	Site-Selective Chemical Reaction on Flexible Polymer Films for Tin Oxide Nanosheet Patterning. European Journal of Inorganic Chemistry, 2011, 2011, 2819-2825.	2.0	22
112	A facile template-free route to synthesize porous ZnO nanosheets with high surface area. Journal of Alloys and Compounds, 2013, 580, 373-376.	5.5	22
113	Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. Langmuir, 2004, 20, 3188-94.	3.5	22
114	In situ forced hydrolysis-assisted fabrication and photo-induced electrical property in sensor of ZnO nanoarrays. Journal of Colloid and Interface Science, 2008, 325, 459-463.	9.4	21
115	Synthesis of CeO2 nanorods with improved photocatalytic activity: comparison between precipitation and hydrothermal process. Journal of Materials Science: Materials in Electronics, 2013, 24, 1644-1650.	2.2	21
116	Highly monodispersed Ag embedded SiO ₂ nanostructured thin film for sensitive SERS substrate: growth, characterization and detection of dye molecules. RSC Advances, 2015, 5, 46229-46239.	3.6	21
117	Fabrication of Zn(OH) ₂ /ZnO Nanosheetâ€ZnO Nanoarray Hybrid Structured Films by a Dissolution–Recrystallization Route. Journal of the American Ceramic Society, 2010, 93, 881-886.	3.8	20
118	Improved Brightness and Color Tunability of Solution-Processed Silicon Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry C, 2020, 124, 23333-23342.	3.1	20
119	Highly Sensitive and Selective Gas Sensors Based on NiO/MnO ₂ @NiO Nanosheets to Detect Allyl Mercaptan Gas Released by Humans under Psychological Stress. Advanced Science, 2022, 9, .	11.2	20
120	Growth Behavior of TiO2 Particles via the Liquid Phase Deposition Process. Journal of the Ceramic Society of Japan, 2007, 115, 831-834.	1.1	19
121	Facet controlled growth mechanism of SnO2 (101) nanosheet assembled film via cold crystallization. Scientific Reports, 2021, 11, 11304.	3.3	19
122	Atomic step formation on porous ZnO nanobelts: remarkable promotion of acetone gas detection up to the parts per trillion level. Journal of Materials Chemistry A, 2022, 10, 13839-13847.	10.3	19
123	Comparison of Medical Treatments for the Dying in a Hospice and a Geriatric Hospital in Japan. Journal of Palliative Medicine, 2006, 9, 152-160.	1.1	18
124	Room-temperature synthesis of tin oxide nano-electrodes in aqueous solutions. Thin Solid Films, 2009, 518, 850-852.	1.8	18
125	Polyethylenimine-Guided Self-Twin Zinc Oxide Nanoarray Assemblies. Crystal Growth and Design, 2009, 9, 3598-3602.	3.0	18
126	Influence of Fe doping on the electrical properties of Sr2MgMoO6â^δ. Materials Chemistry and Physics, 2013, 139, 360-363.	4.0	18

#	Article	IF	CITATIONS
127	Fluorescence detection and imaging of amino-functionalized organic monolayer. Thin Solid Films, 2008, 516, 2541-2546.	1.8	17
128	Synthesis of Acicular BaTiO3 Particles using Acicular Barium Oxalates. Crystal Growth and Design, 2008, 8, 169-171.	3.0	17
129	Tin oxide coating on polytetrafluoroethylene films in aqueous solutions. Polymers for Advanced Technologies, 2010, 21, 211-215.	3.2	17
130	Highly porous ZnO nanosheets self-assembled in rosette-like morphologies for dye-sensitized solar cell application. New Journal of Chemistry, 2015, 39, 7961-7970.	2.8	17
131	Selective nonanal molecular recognition with SnO ₂ nanosheets for lung cancer sensor. International Journal of Applied Ceramic Technology, 2019, 16, 1807-1811.	2.1	17
132	Selective Detection of Target Volatile Organic Compounds in Contaminated Air Using Sensor Array with Machine Learning: Aging Notes and Mold Smells in Simulated Automobile Interior Contaminant Gases. Sensors, 2020, 20, 2687.	3.8	17
133	Self-assembly of Particle Wires in 2-D Ordered Array. Chemistry Letters, 2003, 32, 1016-1017.	1.3	16
134	Atomic scale flattening of organosilane self-assembled monolayer and patterned tin hydroxide thin films. Journal of the European Ceramic Society, 2004, 24, 427-434.	5.7	16
135	Liquid Manipulation Lithography to Fabricate a Multifunctional Microarray of Organosilanes on an Oxide Surface under Ambient Conditions. Advanced Functional Materials, 2008, 18, 3049-3055.	14.9	16
136	Fabrication of Blanketâ€Like Assembled ZnO Nanowhiskers Using an Aqueous Solution. Journal of the American Ceramic Society, 2009, 92, 922-926.	3.8	16
137	Dye Adsorption Characteristics of Anatase TiO2 Film Prepared in an Aqueous Solution. Thin Solid Films, 2009, 518, 845-849.	1.8	16
138	Preparation of single-crystalline ZnO films on ZnO-buffered a-plane sapphire by chemical bath deposition. Journal of Crystal Growth, 2009, 311, 3687-3691.	1.5	16
139	Roomâ€ŧemperature synthesis and characterization of porous CeO ₂ thin films. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 139-142.	1.8	16
140	Water bathing synthesis of high-surface-area nanocrystal-assembled SnO2 particles. Journal of Solid State Chemistry, 2012, 189, 21-24.	2.9	16
141	Structural and conductivity analysis on cerium fluoride nanoparticles prepared by sonication assisted method. Solid State Sciences, 2012, 14, 626-634.	3.2	15
142	Shape-controlled synthesis of α-Fe2O3 nanostructures: engineering their surface properties for improved photocatalytic degradation efficiency. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	15
143	Structural, electrical and electrochemical studies of LiCoVO4 cathode material for lithium rechargeable batteries. Powder Technology, 2013, 235, 454-459.	4.2	15
144	Effect of Coordinatively Unsaturated Sites in MOFâ€Derived Highly Porous CuO for Catalystâ€Free ppbâ€Level Gas Sensors. Advanced Materials Interfaces, 2021, 8, 2100283.	3.7	15

#	Article	IF	CITATIONS
145	Acicular crystal-assembled TiO2 thin films and their deposition mechanism. Journal of Crystal Growth, 2009, 311, 512-517.	1.5	14
146	Low-temperature fabrication of ZnO nanoarray films by forced hydrolysis of anhydrous zinc acetate layer. Journal of Crystal Growth, 2009, 311, 597-600.	1.5	14
147	Liquid phase deposited titania coating to enable in vitro apatite formation on Ti6Al4V alloy. Journal of Materials Science: Materials in Medicine, 2014, 25, 375-381.	3.6	14
148	Gas sensor properties of nanopore-bearing Co ₃ O ₄ particles containing Pt or Pd particles. Journal of Asian Ceramic Societies, 2020, 8, 138-148.	2.3	14
149	High-resolution transmission electron microscopy study of Ca3Co4O9. Journal of Electron Microscopy, 2004, 53, 397-401.	0.9	13
150	Synthesis of highly conductive and transparent ZnO nanowhisker films using aqueous solution. Journal of the Ceramic Society of Japan, 2008, 116, 384-388.	1.1	13
151	Low-temperature fabrication of porous and transparent ZnO films with hybrid structure by self-hydrolysis method. Thin Solid Films, 2009, 518, 638-641.	1.8	13
152	Effects of polyethylenimine on morphology and property of ZnO films grown in aqueous solutions. Applied Surface Science, 2009, 255, 6823-6826.	6.1	13
153	Site-Selective Growth of Highly Oriented ZnO Rod Arrays on Patterned Functionalized Si Substrates from Aqueous Solution. Crystal Growth and Design, 2009, 9, 2168-2172.	3.0	13
154	Aqueous synthesis of single-crystalline ZnO prisms on graphite substrates. Journal of Crystal Growth, 2011, 314, 180-184.	1.5	13
155	Tin oxide nanosheet thin film with bridge type structure for gas sensing. Thin Solid Films, 2020, 698, 137845.	1.8	13
156	CH3SH and H2S Sensing Properties of V2O5/WO3/TiO2 Gas Sensor. Chemosensors, 2021, 9, 113.	3.6	13
157	Metal-Oxide-Semiconductor (MOS) Devices Composed of Biomimetically Synthesized TiO ₂ Dielectric Thin Films. Key Engineering Materials, 2002, 214-215, 163-170.	0.4	12
158	Rapid growth of thick particulate film of crystalline ZnO in an aqueous solution. Thin Solid Films, 2008, 516, 2474-2477.	1.8	12
159	Crystal growth of tin oxide nano-sheets in aqueous solutions and time variation of N2 adsorption characteristics. Progress in Crystal Growth and Characterization of Materials, 2012, 58, 106-120.	4.0	12
160	Structural and electrical studies of LiMnVO4 cathode material for rechargeable lithium batteries. Ionics, 2012, 18, 31-37.	2.4	12
161	Direct Growth of Flower-Shaped ZnO Nanostructures on FTO Substrate for Dye-Sensitized Solar Cells. Crystals, 2019, 9, 405.	2.2	12
162	Control of crystal growth for ZnO nanowhisker films in aqueous solution. Thin Solid Films, 2009, 518, 906-910.	1.8	11

#	Article	IF	CITATIONS
163	Room Temperature Ferromagnetism in Transition Metal Doped TiO ₂ Nanowires. Science of Advanced Materials, 2009, 1, 227-229.	0.7	11
164	Interfacial Observation of an Alkylsilane Self-Assembled Monolayer on Hydrogen-Terminated Si. Langmuir, 2004, 20, 8942-8946.	3.5	10
165	Semi-circular shaped ZnO nanowhiskers assemblies deposited using an aqueous solution. Applied Surface Science, 2008, 255, 2329-2332.	6.1	10
166	Synthesis, Characterization, Photocatalytic and Sensing Properties of Mn-Doped ZnO Nanoparticles. Journal of Nanoscience and Nanotechnology, 2019, 19, 8095-8103.	0.9	10
167	Effect of oxygen vacancy sites in exposed crystal facet on the gas sensing performance of ZnO nanomaterial. Journal of the American Ceramic Society, 2022, 105, 2150-2160.	3.8	10
168	Surface Molecular Separator for Selective Gas Sensing. Industrial & Engineering Chemistry Research, 2020, 59, 17894-17900.	3.7	9
169	Tin Oxide Nanosheets on Microelectromechanical System Devices for Improved Gas Discrimination . ACS Applied Nano Materials, 2021, 4, 14285-14291.	5.0	9
170	A Novel Approach to Fabricate Hydroxyapatite Coating on Titanium Substrate in an Aqueous Solution Journal of the Ceramic Society of Japan, 2001, 109, 676-680.	1.3	8
171	Surface morphology control of zirconia thin films prepared using novel photochromic molecules. Thin Solid Films, 2008, 516, 2635-2638.	1.8	8
172	Fabrication of ZnO nanowhiskers array film by forced-hydrolysis-initiated-nucleation technique using various templates. Thin Solid Films, 2009, 518, 621-624.	1.8	8
173	Hexagonal Symmetry Radial Whiskers of ZnO Crystallized in Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2009, 9, 522-526.	0.9	8
174	Analysis of P(VdCl-co-AN-co-MMA)-LiClO4-EC triblock copolymer electrolytes. Bulletin of Materials Science, 2015, 38, 183-190.	1.7	8
175	Gold nanoparticle–mesoporous silica sheet composites with enhanced antibody adsorption capacity. New Journal of Chemistry, 2015, 39, 4070-4077.	2.8	8
176	Facile synthesis of ZnO nanobullets by solution plasma without chemical additives. RSC Advances, 2021, 11, 26785-26790.	3.6	8
177	A Special Issue on: Applications of Metal Oxide Nanostructures. Science of Advanced Materials, 2010, 2, 1-2.	0.7	8
178	Selectively dissolution–recrystallization of ZnO crystals at the air–liquid interface. Journal of Crystal Growth, 2009, 311, 482-485.	1.5	7
179	Optical properties and dye adsorption characteristics of acicular crystal assembled TiO2 thin films. Journal of Crystal Growth, 2009, 311, 436-439.	1.5	7
180	Low-Temperature Fabrication of Bunch-Shaped ZnO Nanowires Using a Sodium Hydroxide Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2011, 11, 10935-10939.	0.9	7

#	Article	IF	CITATIONS
181	Ethanol separation from ethanol aqueous solution by pervaporation using hydrophobic mesoporous silica membranes. Journal of the Ceramic Society of Japan, 2011, 119, 549-556.	1.1	7
182	Site-Selective Deposition of TiO ₂ Thin Films Using Self-Assembled Monolayers and Their Dielectric Properties. Key Engineering Materials, 2002, 228-229, 125-130.	0.4	6
183	Aqueous Solution Synthesis of Anatase TiO2 Particles. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 824-827.	0.2	6
184	High protein-adsorption characteristics of acicular crystal assembled TiO2 films and their photoelectric effect. Thin Solid Films, 2011, 519, 5135-5138.	1.8	6
185	Polyethylenimine-assisted synthesis of transparent ZnO nanowhiskers at ambient temperatures. Thin Solid Films, 2014, 558, 134-139.	1.8	6
186	Activity of formaldehyde dehydrogenase on titanium dioxide films with different crystallinities. Applied Surface Science, 2015, 329, 262-268.	6.1	6
187	Bio-inspired mineralization of nanostructured TiO2 on PET and FTO films with high surface area and high photocatalytic activity. Scientific Reports, 2020, 10, 13499.	3.3	6
188	Fabrication and characterization of p-Si/n-In2O3 and p-Si/n-ITO junction diodes for optoelectronic device applications. Surfaces and Interfaces, 2021, 23, 100992.	3.0	6
189	Ceramic nanostructures of SnO ₂ , TiO ₂ , and ZnO via aqueous crystal growth: cold crystallization and morphology control. Journal of the Ceramic Society of Japan, 2020, 128, 718-737.	1.1	6
190	Self-Standing Particle-Binding ZnO Film. Journal of Nanoscience and Nanotechnology, 2009, 9, 433-438.	0.9	5
191	Rapid Low-Temperature Synthesis of Porous ZnO Nanoparticle Film by Self-Hydrolysis Technique. Key Engineering Materials, 0, 445, 123-126.	0.4	5
192	Two-Dimensional Patterning of Inorganic Particles in Resin Using Ultrasound-Induced Plate Vibration. Japanese Journal of Applied Physics, 2011, 50, 088006.	1.5	5
193	Ceria Polymer Hybrid Nanoparticles and Assembled Films for Coating Applications. ACS Applied Nano Materials, 2018, 1, 2112-2119.	5.0	5
194	Medium Dependent Size and Shape Tuning of Indium Oxide Nanoparticles and Their Gas Sensing Properties. Advanced Science, Engineering and Medicine, 2011, 3, 202-212.	0.3	5
195	Patterning of ZrO ₂ Precursor Through a Gas-Generated Self-Assembly Route. Journal of Nanoscience and Nanotechnology, 2006, 6, 1842-1846.	0.9	4
196	Micropore size distribution in nanocrystal assembled TiO2 particles. Journal of the Ceramic Society of Japan, 2008, 116, 426-430.	1.1	4
197	Fusion and Growth Behavior of Gold Nanoparticles Stabilized by Allylmercaptane. Macromolecular Symposia, 2008, 270, 82-87.	0.7	4
198	Morphology control of anisotropic BaTiO3 and BaTiOF4 using organic–inorganic interaction. Journal of Crystal Growth, 2009, 311, 589-592.	1.5	4

#	Article	IF	CITATIONS
199	Iridescent Stand-Alone TiO ₂ Films Crystallized from Aqueous Solutions. Journal of Nanoscience and Nanotechnology, 2009, 9, 439-444.	0.9	4
200	Facile Synthesis of Characteristic Tin Oxide Particulate Films in Aqueous Solution. International Journal of Applied Ceramic Technology, 2012, 9, 920-927.	2.1	4
201	Water Bath Synthesis of Tin Oxide Nanostructure Coating for a Molecular Sensor. Journal of Nanoscience and Nanotechnology, 2014, 14, 2252-2257.	0.9	4
202	Self-supported Zn5(CO3)2(OH)6 film formation at air-liquid interface. Transactions of the Materials Research Society of Japan, 2007, 32, 739-742.	0.2	4
203	Morphology control of ZnO nanostructures using Zn and W electrodes in solution plasma process. Materials Letters, 2022, 309, 131349.	2.6	4
204	Gas Sensing Properties of High-Purity Semiconducting Single-Walled Carbon Nanotubes for NH ₃ , H ₂ , and NO. ECS Journal of Solid State Science and Technology, 2021, 10, 121004.	1.8	4
205	Thermoelectric Properties of Highly Textured Zn-In-O Ceramics. Key Engineering Materials, 2002, 228-229, 161-166.	0.4	3
206	Dielectric Characteristics of SrTiO ₃ Precursor Thin Film Prepared on Self-Assembled Monolayers by the Liquid Phase Deposition Method. Key Engineering Materials, 2003, 248, 73-76.	0.4	3
207	Low Dimensional Particle Patterning. Journal of Dispersion Science and Technology, 2005, 25, 503-511.	2.4	3
208	Nano TiO2 Coating on SnO2: F Electrode in an Aqueous Solution. Journal of the Ceramic Society of Japan, 2007, 115, 813-817.	1.1	3
209	Zinc oxide particles connected by nano-sheets and their heat treatment. Metals and Materials International, 2007, 13, 395-398.	3.4	3
210	Structure and piezoelectric properties of 1-μm-thick polar-axis-oriented CaBi4Ti4O15 films. Applied Physics A: Materials Science and Processing, 2007, 87, 637-640.	2.3	3
211	Synthesis of nanocrystal assembled TiO2 particles by boric acid free liquid phase crystal deposition. Journal of the Ceramic Society of Japan, 2008, 116, 422-425.	1.1	3
212	Chemical Deposition and Corrosive Resistance of TiO[sub 2]/MgF[sub 2] Composite Nanofilm on Magnesium Alloy AZ31. Electrochemical and Solid-State Letters, 2009, 12, D68.	2.2	3
213	Microstructure of High <1>c-Axis Oriented Stand-Alone ZnO Self-Assembled Film. Journal of Nanoscience and Nanotechnology, 2009, 9, 490-494.	0.9	3
214	Aqueous phase deposition of dense tin oxide films with nano-structured surfaces. Journal of Solid State Chemistry, 2014, 214, 42-46.	2.9	3
215	Transitionâ€Metalâ€Doped NIRâ€Emitting Silicon Nanocrystals. Angewandte Chemie, 2017, 129, 6253-6256.	2.0	3
216	Use of a Phage-Display Method to Identify Peptides that Bind to a Tin Oxide Nanosheets. Protein and Peptide Letters, 2018, 25, 68-75.	0.9	3

#	Article	IF	CITATIONS
217	Co-Substitution Effect in Room-Temperature Ferromagnetic Oxide Sr3.1Y0.9Co4O10.5. Materials, 2020, 13, 2301.	2.9	3
218	Liquid Phase Morphology Control of ZnO Nanowires, Ellipse Particles, Hexagonal Rods, and Particle in Aqueous Solutions. ISRN Nanotechnology, 2012, 2012, 1-6.	1.3	3
219	Synthesis of Tin Oxide Nanosheet with Liquid Phase Crystal Growth for Gas Sensing. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 271-277.	0.2	3
220	Fabrication of Micropatterned Dielectric Thin Films on Self-Assembled Monolayers. Key Engineering Materials, 2002, 214-215, 157-162.	0.4	2
221	Control of Crystal Growth of ZnO Nanowhiskers in Aqueous Solution and Synthesis of Transparent Nanoarrays. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 834-838.	0.2	2
222	Positioning of cationic silver nanoparticle by using AFM lithography and electrostatic interaction. Applied Surface Science, 2007, 254, 621-626.	6.1	2
223	Synthesis of 3′-allylindoline spirobenzopyrans derived from 3-allyl-3H-indoles. Tetrahedron Letters, 2014, 55, 6427-6431.	1.4	2
224	Halogen- and Acid-Free Syntheses of TiO2 Nanocrystal Coatings and High Surface Area TiO2 Nanocrystal-Assembled Particles. Journal of Nanoscience and Nanotechnology, 2014, 14, 2231-2237.	0.9	2
225	One Dimensional Spindle Titanium Oxide Nanocrystals. Journal of Nanoscience and Nanotechnology, 2014, 14, 2968-2973.	0.9	2
226	Development of Na0.5CoO2 Thick Film Prepared by Screen-Printing Process. Materials, 2020, 13, 2805.	2.9	2
227	LiVO2 as a new solid-state phase change material. Journal of Alloys and Compounds, 2021, 882, 160741.	5.5	2
228	Self-assembly Patterning of Nano/Micro-Particles [Translated] ^{â€} . KONA Powder and Particle Journal, 2007, 25, 244-254.	1.7	2
229	Development of Cramics Nano-structures with Liquid Phase Crystal Growth. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 616-623.	0.2	2
230	Liquid Phase Synthesis of Ceramics Nanostructures. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, 22-26.	0.2	2
231	Examination of VOC Concentration of Aroma Essential Oils and Their Major VOCs Diffused in Room Air. International Journal of Environmental Research and Public Health, 2022, 19, 2904.	2.6	2
232	Self-Adaptive Gas Sensor System Based on Operating Conditions Using Data Prediction. ACS Sensors, 2022, 7, 142-150.	7.8	2
233	Thermoelectric properties of Ca/sub 3/Co/sub 4/O/sub 9/-based ceramics textured by templated grain growth method. , 0, , .		1
234	Growth of Highly Orientated and Well-Aligned ZnO Nanowhiskers Using Aqueous Solutions. Materials Science Forum, 2009, 620-622, 477-480.	0.3	1

#	Article	IF	CITATIONS
235	Unique structure of ZnO films deposited by chemical bath deposition. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2551-2554.	1.8	1
236	Nanofabrication of Metal Oxide Nanostructures in Aqueous Solutions. , 2011, , .		1
237	Shape-controlled synthesis of $\hat{l}\pm$ -Fe2O3 nanostructures: engineering their surface properties for improved photocatalytic degradation efficiency. , 2012, , 113-125.		1
238	Anisotropic Crystal Growth and Microstructure Observation of Single Phase SnO2 Nano-sheet Assemblies. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2012, 59, 342-346.	0.2	1
239	Stereochemistry of C7-allyl yohimbine explored by X-ray crystallography. Journal of Molecular Structure, 2013, 1036, 133-143.	3.6	1
240	SnO ₂ Nanosheet–assembled Graded Continuous Film. International Journal of Applied Ceramic Technology, 2014, 11, 550-557.	2.1	1
241	Long Term Synthesis of Needle Crystal Assembled TiO2 Films in an Aqueous Solution. Journal of Nanoscience and Nanotechnology, 2014, 14, 3056-3061.	0.9	1
242	High orderly nano-silica assembly and its application in synthesizing TiO 2 /SiO 2 bilayer films. Surface and Coatings Technology, 2018, 345, 22-30.	4.8	1
243	Influence of Growth Conditions on the Morphology of Zinc Oxide Nanoarrays. Transactions of the Materials Research Society of Japan, 2008, 33, 709-712.	0.2	1
244	Sensor Properties of Series-connected Mixed-potential H2 Gas Sensor. Sensors and Materials, 2019, 31, 1351.	0.5	1
245	Nanoarchitectonics of Acicular Nanocrystal Assembly and Nanosheet Assembly for Lithium-Ion Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 3004-3012.	0.9	1
246	Thermoelectric Properties of Textured Ceramics of Co-Containing Layer Structured Oxide. Key Engineering Materials, 2002, 228-229, 155-160.	0.4	0
247	Investigation on the assessment of nano-block integration process for novel thermoelectric materials. , 0, , .		Ο
248	Morphology Control of ZnO Particles in Liquid Phase. Key Engineering Materials, 2007, 350, 3-6.	0.4	0
249	Nature-guided Materials Processing. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 818-818.	0.2	0
250	Low-Temperature Fabrication of Semi-Circular Shaped ZnO Nanowhiskers Using an Aqueous Solution. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 849-853.	0.2	0
251	Liquid Phase Patterning of Ceramic Films. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2007, 54, 854-862.	0.2	0
252	Bottom-up fabrication and piezoelectric properties of CaBi4Ti4O15 micro-plateaus. Applied Physics A: Materials Science and Processing, 2007, 88, 273-276.	2.3	0

#	Article	IF	CITATIONS
253	CONTROL OF NANOSTRUCTURE OF MATERIALS. , 2008, , 177-265.		Ο
254	Synthesis of Well-Aligned ZnO Nanowhisker Films Using Aqueous Solution for Use in Dye-Sensitized Sensor. Key Engineering Materials, 2008, 388, 27-30.	0.4	0
255	Influence of Synthesis Condition on N ₂ Adsorption Characteristics of Anatase TiO ₂ Particles Prepared in an Aqueous Solution. Key Engineering Materials, 2008, 388, 103-106.	0.4	0
256	ZnO Nanoarrays Film Grown by Forced-Hydrolysis-Initiated-Nucleation Technique and its Photo-Induced Electrical Property. Key Engineering Materials, 0, 421-422, 83-86.	0.4	0
257	Optical and adsorption properties of ZnO nanotubes prepared from aqueous solutions. , 2010, , .		0
258	Low-temperature fabrication of bunch-shaped ZnO nanowires using an sodium hydroxide aqueous solution. , 2010, , .		0
259	Nano/Micro-Patterning of Metal Oxide Nanocrystals. , 0, , .		Ο
260	Self-assembly and Patterning of Nanocrystals. , 0, , .		0
261	Anisotropic Crystal Growth and Microstructure Observation of Single Phase SnO2 Nano-sheet Assemblies. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2012, 59, 312.	0.2	0
262	Development of Nanomaterials with Energy-saving Green Processes and their Applications. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2014, 61, 442.	0.2	0
263	Nanostructuring of Metal Oxides in Aqueous Solutions. , 2016, , 369-458.		Ο
264	Preparation of Double-shelled Fluorescent Silicon Nanocrystals and Fabrication of Its Thin Layer by Electrophoretic Deposition Process. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65, 108-113.	0.2	0
265	Self-assembly patterning of ultrafine zirconia nanocrystal films fabricated on chemically patterned templates. Nanotechnology, 2018, 29, 495702.	2.6	Ο
266	Morphology Control of Particles and Their Patterning. , 2018, , 765-775.		0
267	Structural and electrochemical studies of LiNixCo(1-x)VO4 (x = 0.2, 0.8) cathode materials for rechargeable lithium batteries. Ionics, 2019, 25, 4089-4098.	2.4	0
268	Preparation of Double-Shelled Fluorescent Silicon Nanocrystals and Fabrication of Its Thin Layer by Electrophoretic Deposition Process. Materials Transactions, 2019, 60, 49-54.	1.2	0
269	Self-assembly Patterning of Nano/micro-particles. KONA Powder and Particle Journal, 2007, 25, 2-3.	1.7	0
270	Crystallization of Titania Films in Aqueous Solutions and Their Dye Adsorption Properties. Ceramic Engineering and Science Proceedings, 0, , 203-213.	0.1	0

#	Article	IF	CITATIONS
271	Porous Anatase Titanium Dioxide Films Prepared in Aqueous Solution. , 0, , 121-132.		Ο
272	Fabrication of Metal Oxide Nanomaterials with Smart Process. Journal of Smart Processing, 2012, 1, 155-160.	0.1	0
273	Characterization of Optical- and N ₂ Adsorption Properties of Self-Twin Zinc Oxide Nanoarrays Assemblies. Materials Focus, 2013, 2, 20-23.	0.4	Ο
274	Aqueous Coatings. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2014, 83, 100-103.	0.1	0
275	Biomimetic Morphology Control of Metal Oxides and Their Site-Selective Immobilization. , 2017, , 47-87.		Ο
276	Aqueous Solution Process. , 2021, , 97-104.		0
277	Polar Axis Orientation and Electrical Properties of Alkoxy-Derived One Micro-Meter-Thick Ferro-/Piezoelectric Films. , 0, , 33-42.		0