
Ruth Chia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4650332/publications.pdf Version: 2024-02-01

РПТН СНИ

#	Article	IF	CITATIONS
1	Genetic evaluation of dementia with Lewy bodies implicates distinct disease subgroups. Brain, 2022, 145, 1757-1762.	7.6	17
2	Unraveling the complex interplay between genes, environment, and climate in ALS. EBioMedicine, 2022, 75, 103795.	6.1	32
3	ldentification of genetic risk loci and prioritization of genes and pathways for myasthenia gravis: a genome-wide association study. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	36
4	<i>ATXN2</i> intermediate expansions in amyotrophic lateral sclerosis. Brain, 2022, 145, 2671-2676.	7.6	16
5	<scp>GRN</scp> Mutations Are Associated with Lewy Body Dementia. Movement Disorders, 2022, 37, 1943-1948.	3.9	5
6	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron, 2021, 109, 448-460.e4.	8.1	56
7	Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurology, The, 2021, 20, 107-116.	10.2	62
8	Mutational Analysis of Known ALS Genes in an Italian Population-Based Cohort. Neurology, 2021, 96, e600-e609.	1.1	23
9	Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Science Advances, 2021, 7, .	10.3	59
10	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nature Genetics, 2021, 53, 294-303.	21.4	198
11	Combined epigenetic/genetic study identified an ALS age of onset modifier. Acta Neuropathologica Communications, 2021, 9, 75.	5.2	7
12	Association of Variants in the <i>SPTLC1</i> Gene With Juvenile Amyotrophic Lateral Sclerosis. JAMA Neurology, 2021, 78, 1236.	9.0	46
13	Nuclear depletion of RNA-binding protein ELAVL3 (HuC) in sporadic and familial amyotrophic lateral sclerosis. Acta Neuropathologica, 2021, 142, 985-1001.	7.7	12
14	The Overlapping Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Frontiers in Neuroscience, 2020, 14, 42.	2.8	152
15	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	5.3	118
16	Genetic analysis of neurodegenerative diseases in a pathology cohort. Neurobiology of Aging, 2019, 76, 214.e1-214.e9.	3.1	25
17	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	8.1	517
18	Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurology, The, 2018, 17, 94-102.	10.2	432

КИТН СНІА

#	Article	IF	CITATIONS
19	NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiology of Aging, 2017, 57, 247.e9-247.e13.	3.1	108
20	The G2385R risk factor for Parkinson's disease enhances CHIP-dependent intracellular degradation of LRRK2. Biochemical Journal, 2017, 474, 1547-1558.	3.7	34
21	Critical periods after stroke study: translating animal stroke recovery experiments into a clinical trial. Frontiers in Human Neuroscience, 2015, 9, 231.	2.0	46
22	Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2626-2631.	7.1	342
23	Phosphorylation of LRRK2 by casein kinase $1\hat{l}\pm$ regulates trans-Golgi clustering via differential interaction with ARHGEF7. Nature Communications, 2014, 5, 5827.	12.8	90
24	Arsenite Stress Down-regulates Phosphorylation and 14-3-3 Binding of Leucine-rich Repeat Kinase 2 (LRRK2), Promoting Self-association and Cellular Redistribution. Journal of Biological Chemistry, 2014, 289, 21386-21400.	3.4	38
25	Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience, 2014, 17, 664-666.	14.8	398
26	A Direct Interaction between Leucine-rich Repeat Kinase 2 and Specific β-Tubulin Isoforms Regulates Tubulin Acetylation. Journal of Biological Chemistry, 2014, 289, 895-908.	3.4	119
27	The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson's disease is a partial loss-of-function mutation. Biochemical Journal, 2012, 446, 99-111.	3.7	104
28	ls inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson's disease?. BMC Medicine, 2012, 10, 20.	5.5	58
29	Modification of Superoxide Dismutase 1 (SOD1) Properties by a GFP Tag – Implications for Research into Amyotrophic Lateral Sclerosis (ALS). PLoS ONE, 2010, 5, e9541.	2.5	63
30	ENU Mutagenesis Reveals a Novel Phenotype of Reduced Limb Strength in Mice Lacking Fibrillin 2. PLoS ONE, 2010, 5, e9137.	2.5	19
31	Superoxide Dismutase 1 and tgSOD1G93A Mouse Spinal Cord Seed Fibrils, Suggesting a Propagative Cell Death Mechanism in Amyotrophic Lateral Sclerosis. PLoS ONE, 2010, 5, e10627.	2.5	113
32	An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy. DMM Disease Models and Mechanisms, 2009, 2, 359-373.	2.4	91
33	Mutant Glycyl-tRNA Synthetase (Gars) Ameliorates SOD1G93A Motor Neuron Degeneration Phenotype but Has Little Affect on Loa Dynein Heavy Chain Mutant Mice. PLoS ONE, 2009, 4, e6218.	2.5	15
34	The origins and uses of mouse outbred stocks. Nature Genetics, 2005, 37, 1181-1186.	21.4	316
35	The SOD1 transgene in the G93A mouse model of amyotrophic lateral sclerosis lies on distal mouse chromosome 12. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2005, 6, 111-114.	2.1	19
36	Genome-Wide Analyses Identify KIF5A as a Novel ALS Gene. SSRN Electronic Journal, 0, , .	0.4	4

КИТН СНІА

#	Article	IF	CITATIONS
37	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. SSRN Electronic Journal, 0, , .	0.4	1
38	Mutations in the Sphingolipid Pathway Gene <i>SPTLC1</i> are a Cause of Amyotrophic Lateral Sclerosis. SSRN Electronic Journal, 0, , .	0.4	0