
Lorena Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4650319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ionic liquid-modified materials for solid-phase extraction and separation: A review. Analytica Chimica Acta, 2012, 715, 19-41.	5.4	321
2	A stretchable and screen-printed electrochemical sensor for glucose determination in human perspiration. Biosensors and Bioelectronics, 2017, 91, 885-891.	10.1	274
3	An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples. Analytica Chimica Acta, 2007, 584, 189-195.	5.4	161
4	Speciation of mercury by ionic liquid-based single-drop microextraction combined with high-performance liquid chromatography-photodiode array detection. Talanta, 2009, 78, 537-541.	5.5	140
5	Ionic liquid-based single-drop microextraction followed by liquid chromatography-ultraviolet spectrophotometry detection to determine typical UV filters in surface water samples. Talanta, 2010, 81, 549-555.	5.5	138
6	Sensitive determination of free benzophenone-3 in human urine samples based on an ionic liquid as extractant phase in single-drop microextraction prior to liquid chromatography analysis. Journal of Chromatography A, 2007, 1174, 95-103.	3.7	125
7	Simple and commercial readily-available approach for the direct use of ionic liquid-based single-drop microextraction prior to gas chromatography. Journal of Chromatography A, 2009, 1216, 1290-1295.	3.7	112
8	Determination of organochlorine pesticides in water samples by dispersive liquid–liquid microextraction coupled to gas chromatography–mass spectrometry. Analytica Chimica Acta, 2009, 649, 218-221.	5.4	97
9	Headspace single-drop microextraction for the analysis of chlorobenzenes in water samples. Journal of Chromatography A, 2005, 1089, 25-30.	3.7	93
10	Determination of organochlorine pesticides in complex matrices by single-drop microextraction coupled to gas chromatography–mass spectrometry. Analytica Chimica Acta, 2009, 638, 29-35.	5.4	81
11	Determination of geosmin and 2-methylisoborneol in water and wine samples by ultrasound-assisted dispersive liquida€"liquid microextraction coupled to gas chromatography–mass spectrometry. Journal of Chromatography A, 2011, 1218, 17-22.	3.7	78
12	Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (<i>Prunus) Tj ETQq0 0 0 i 63, 5395-5402.</i>	gBT /Over 5.2	lock 10 Tf 50 76
13	Portable electrochemical sensor based on 4-aminobenzoic acid-functionalized herringbone carbon nanotubes for the determination of ascorbic acid and uric acid in human fluids. Biosensors and Bioelectronics, 2018, 109, 123-131.	10.1	71
14	Ionic liquid-functionalized silica for selective solid-phase extraction of organic acids, amines and aldehydes. Journal of Chromatography A, 2012, 1226, 2-10.	3.7	70
15	Chemically surface-modified carbon nanoparticle carrier for phenolic pollutants: Extraction and electrochemical determination of benzophenone-3 and triclosan. Analytica Chimica Acta, 2008, 616, 28-35.	5.4	64
16	Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples. Analytica Chimica Acta, 2007, 592, 9-15.	5.4	58
17	A simultaneous, direct microwave/ultrasound-assisted digestion procedure for the determination of total Kjeldahl nitrogen. Ultrasonics Sonochemistry, 2009, 16, 564-569.	8.2	57
18	Mercury determination in urine samples by gold nanostructured screen-printed carbon electrodes after vortex-assisted ionic liquid dispersive liquid–liquid microextraction. Analytica Chimica Acta, 2016, 915, 49-55.	5.4	57

LORENA VIDAL

#	Article	IF	CITATIONS
19	Determination of nitroaromatic explosives in water samples by direct ultrasound-assisted dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Talanta, 2011, 85, 2546-2552.	5.5	56
20	Au-IDA microelectrodes modified with Au-doped graphene oxide for the simultaneous determination of uric acid and ascorbic acid in urine samples. Electrochimica Acta, 2017, 227, 275-284.	5.2	53
21	Determination of cyclic and linear siloxanes in wastewater samples by ultrasound-assisted dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Talanta, 2014, 120, 191-197.	5.5	50
22	Zeolite/iron oxide composite as sorbent for magnetic solid-phase extraction of benzene, toluene, ethylbenzene and xylenes from water samples prior to gas chromatography⬜mass spectrometry. Journal of Chromatography A, 2016, 1458, 18-24.	3.7	49
23	A modified zeolite/iron oxide composite as a sorbent for magnetic dispersive solid-phase extraction for the preconcentration of nonsteroidal anti-inflammatory drugs in water and urine samples. Journal of Chromatography A, 2019, 1603, 33-43.	3.7	49
24	Zeolites and zeolite-based materials in extraction and microextraction techniques. Analyst, The, 2019, 144, 366-387.	3.5	48
25	Metal applications of liquid-phase microextraction. TrAC - Trends in Analytical Chemistry, 2019, 112, 241-247.	11.4	47
26	Graphene oxide/Fe3O4 as sorbent for magnetic solid-phase extraction coupled with liquid chromatography to determine 2,4,6-trinitrotoluene in water samples. Analytical and Bioanalytical Chemistry, 2017, 409, 2665-2674.	3.7	41
27	Evaluation of herringbone carbon nanotubes-modified electrodes for the simultaneous determination of ascorbic acid and uric acid. Electrochimica Acta, 2018, 285, 284-291.	5.2	41
28	Hydrophilic magnetic ionic liquid for magnetic headspace single-drop microextraction of chlorobenzenes prior to thermal desorption-gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2018, 410, 4679-4687.	3.7	40
29	Screen-printed electrode based electrochemical detector coupled with ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction for determination of mercury in water samples. Talanta, 2015, 135, 34-40.	5.5	38
30	A modified ZSM-5 zeolite/Fe ₂ O ₃ composite as a sorbent for magnetic dispersive solid-phase microextraction of cadmium, mercury and lead from urine samples prior to inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2018, 33, 856-866.	3.0	37
31	Screen-printed electrode-based electrochemical detector coupled with in-situ ionic-liquid-assisted dispersive liquid–liquid microextraction for determination of 2,4,6-trinitrotoluene. Analytical and Bioanalytical Chemistry, 2014, 406, 2197-2204.	3.7	31
32	Trivalent manganese as an environmentally friendly oxidizing reagent for microwave- and ultrasound-assisted chemical oxygen demand determination. Ultrasonics Sonochemistry, 2009, 16, 686-691.	8.2	27
33	Tungsten coil atomic emission spectrometry combined with dispersive liquid–liquid microextraction: A synergistic association for chromium determination in water samples. Talanta, 2016, 148, 602-608.	5.5	27
34	Rapid determination of hydrophilic phenols in olive oil by vortex-assisted reversed-phase dispersive liquid-liquid microextraction and screen-printed carbon electrodes. Talanta, 2018, 181, 44-51.	5.5	24
35	Determination of four bisphenols in water and urine samples by magnetic dispersive solidâ€phase extraction using a modified zeolite/iron oxide composite prior to liquid chromatography diode array detection. Journal of Separation Science, 2020, 43, 1808-1816.	2.5	23
36	Magnetic headspace adsorptive extraction of chlorobenzenes prior to thermal desorption gas chromatography-mass spectrometry. Analytica Chimica Acta, 2017, 971, 40-47.	5.4	21

LORENA VIDAL

#	Article	IF	CITATIONS
37	Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions. Journal of Chromatography A, 2013, 1285, 7-14.	3.7	20
38	Complexation-mediated electromembrane extraction of highly polar basic drugs—a fundamental study with catecholamines in urine as model system. Analytical and Bioanalytical Chemistry, 2017, 409, 4215-4223.	3.7	19
39	Magnetic dispersive solid-phase extraction using a zeolite-based composite for direct electrochemical determination of lead(II) in urine using screen-printed electrodes. Mikrochimica Acta, 2020, 187, 87.	5.0	17
40	Magnetic dispersive solid-phase extraction using ZSM-5 zeolite/Fe2O3 composite coupled with screen-printed electrodes based electrochemical detector for determination of cadmium in urine samples. Talanta, 2020, 220, 121394.	5.5	17
41	Flavin mononucleotide-exfoliated graphene flakes as electrodes for the electrochemical determination of uric acid in the presence of ascorbic acid. Journal of Electroanalytical Chemistry, 2016, 783, 41-48.	3.8	16
42	Determination of siloxanes in water samples employing graphene oxide/Fe ₃ O ₄ nanocomposite as sorbent for magnetic solidâ€phase extraction prior to GC–MS. Journal of Separation Science, 2018, 41, 4177-4184.	2.5	15
43	Removal of Silver and Lead Ions from Water Wastes Using Azolla filiculoides, an Aquatic Plant, Which Adsorbs and Reduces the Ions into the Corresponding Metallic Nanoparticles Under Microwave Radiation in 5Âmin. Water, Air, and Soil Pollution, 2011, 218, 365-370.	2.4	12
44	Reversed-phase dispersive liquid–liquid microextraction for elemental analysis of gasoline by inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2021, 36, 2338-2345.	3.0	4
45	Liquid-Phase Extraction and Microextraction. , 2014, , 107-152.		3
46	4 Liquid-phase Microextraction Techniques. , 2014, , 191-252.		2
47	Vitamin E determination in edible oils by reversed-phase dispersive liquid-liquid microextraction and screen-printed carbon electrodes. Advances in Sample Preparation, 2022, 1, 100005.	3.0	2
48	Application of magnetic nanomaterials in forensic chemistry. , 2021, , 191-210.		0