Guihua Tai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4650308/publications.pdf

Version: 2024-02-01

	201674	243625
2,136	27	44
citations	h-index	g-index
59	59	2091
docs citations	times ranked	citing authors
	citations 59	2,136 27 citations h-index 59 59

#	Article	IF	CITATIONS
1	\hat{l}^2 -1,6-Glucan From Pleurotus eryngii Modulates the Immunity and Gut Microbiota. Frontiers in Immunology, 2022, 13, 859923.	4.8	12
2	Structure–function studies of galectinâ€14, an important effector molecule in embryology. FEBS Journal, 2021, 288, 1041-1055.	4.7	18
3	Topsy-turvy binding of negatively charged homogalacturonan oligosaccharides to galectin-3. Glycobiology, 2021, 31, 341-350.	2.5	7
4	Human galectin-16 has a pseudo ligand binding site and plays a role in regulating c-Rel-mediated lymphocyte activity. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129755.	2.4	17
5	Citrus-derived DHCP inhibits mitochondrial complex II to enhance TRAIL sensitivity via ROS-induced DR5 upregulation. Journal of Biological Chemistry, 2021, 296, 100515.	3.4	4
6	Galectin-3 N-terminal tail prolines modulate cell activity and glycan-mediated oligomerization/phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	7.1	24
7	Galectin-13/placental protein 13: redox-active disulfides as switches for regulating structure, function and cellular distribution. Glycobiology, 2020, 30, 120-129.	2.5	11
8	Beta-1,6 glucan converts tumor-associated macrophages into an M1-like phenotype. Carbohydrate Polymers, 2020, 247, 116715.	10.2	18
9	Identification of key amino acid residues determining ligand binding specificity, homodimerization and cellular distribution of human Galectin-10. Glycobiology, 2019, 29, 85-93.	2.5	14
10	NMR-based insight into galectin-3 binding to endothelial cell adhesion molecule CD146: Evidence for noncanonical interactions with the lectin's CRD β-sandwich F-face. Glycobiology, 2019, 29, 608-618.	2.5	15
11	Galactan isolated from Cantharellus cibarius modulates antitumor immune response by converting tumor-associated macrophages toward M1-like phenotype. Carbohydrate Polymers, 2019, 226, 115295.	10.2	30
12	Selective effects of ginseng pectins on galectin-3-mediated T cell activation and apoptosis. Carbohydrate Polymers, 2019, 219, 121-129.	10.2	37
13	Galectin-3 binds selectively to the terminal, non-reducing end of $\hat{l}^2(1\hat{a}\dagger'4)$ -galactans, with overall affinity increasing with chain length. Glycobiology, 2019, 29, 74-84.	2.5	12
14	Galectin-13, a different prototype galectin, does not bind \hat{l}^2 -galacto-sides and forms dimers via intermolecular disulfide bridges between Cys-136 and Cys-138. Scientific Reports, 2018, 8, 980.	3.3	23
15	Structural characterization and macrophage activation of a hetero-galactan isolated from Flammulina velutipes. Carbohydrate Polymers, 2018, 183, 207-218.	10.2	40
16	Galectin-10: a new structural type of prototype galectin dimer and effects on saccharide ligand binding. Glycobiology, 2018, 28, 159-168.	2.5	30
17	Structure elucidation and immunomodulatory activity of a \hat{l}^2 -glucan derived from the fruiting bodies of Amillariella mellea. Food Chemistry, 2018, 240, 534-543.	8.2	47
18	The roles and mechanisms of homogalacturonan and rhamnogalacturonan I pectins on the inhibition of cell migration. International Journal of Biological Macromolecules, 2018, 106, 207-217.	7.5	23

#	Article	IF	CITATIONS
19	Resetting the ligand binding site of placental protein 13/galectin-13 recovers its ability to bind lactose. Bioscience Reports, 2018, 38, .	2.4	10
20	Quantitative analysis of dextran in rat plasma using Q-Orbitrap mass spectrometry based on all ion fragmentation strategy. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1095, 24-31.	2.3	6
21	Preparation of individual galactan oligomers, their prebiotic effects, and use in estimating galactan chain length in pectin-derived polysaccharides. Carbohydrate Polymers, 2018, 199, 526-533.	10.2	24
22	<scp>CD</scp> 146 interacts with galectinâ€3 to mediate endothelial cell migration. FEBS Letters, 2018, 592, 1817-1828.	2.8	17
23	Components of heat-treated Helianthus annuus L. pectin inhibit tumor growth and promote immunity in a mouse CT26 tumor model. Journal of Functional Foods, 2018, 48, 190-199.	3.4	14
24	Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology. Food and Function, 2017, 8, 1020-1027.	4.6	55
25	Novel polysaccharide binding to the N-terminal tail of galectin-3 is likely modulated by proline isomerization. Glycobiology, 2017, 27, 1038-1051.	2.5	19
26	Macromolecular assemblies of complex polysaccharides with galectin-3 and their synergistic effects on function. Biochemical Journal, 2017, 474, 3849-3868.	3.7	37
27	The N-terminal tail coordinates with carbohydrate recognition domain to mediate galectin-3 induced apoptosis in T cells. Oncotarget, 2017, 8, 49824-49838.	1.8	44
28	Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker. International Journal of Molecular Sciences, 2016, 17, 2088.	4.1	23
29	Human galectin-2 interacts with carbohydrates and peptides non-classically: new insight from X-ray crystallography and hemagglutination. Acta Biochimica Et Biophysica Sinica, 2016, 48, 939-947.	2.0	24
30	Ginsenoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and -independent DR5 upregulation. Cell Death and Disease, 2016, 7, e2334-e2334.	6.3	84
31	Gefitinib enhances human colon cancer cells to TRAIL-induced apoptosis of via autophagy- and JNK-mediated death receptors upregulation. Apoptosis: an International Journal on Programmed Cell Death, 2016, 21, 1291-1301.	4.9	27
32	Galectin-12 inhibits granulocytic differentiation of human NB4 promyelocytic leukemia cells while promoting lipogenesis. Journal of Leukocyte Biology, 2016, 100, 657-664.	3.3	21
33	Multiple approaches to assess pectin binding to galectin-3. International Journal of Biological Macromolecules, 2016, 91, 994-1001.	7. 5	45
34	Synthesis and immunological evaluation of N-acyl modified Tn analogues as anticancer vaccine candidates. Bioorganic and Medicinal Chemistry, 2016, 24, 915-920.	3.0	18
35	Identification of the bioactive components from pH-modified citrus pectin and their inhibitory effects on galectin-3 function. Food Hydrocolloids, 2016, 58, 113-119.	10.7	48
36	Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR. Glycobiology, 2016, 26, 888-903.	2.5	66

#	Article	IF	CITATIONS
37	The water network in galectin-3 ligand binding site guides inhibitor design. Acta Biochimica Et Biophysica Sinica, 2015, 47, 192-198.	2.0	24
38	Cell cycle arrest, apoptosis and autophagy induced by iminosugars on K562 cells. European Journal of Pharmacology, 2014, 731, 65-72.	3.5	15
39	The inhibitory effects and mechanisms of rhamnogalacturonan I pectin from potato on HT-29 colon cancer cell proliferation and cell cycle progression. International Journal of Food Sciences and Nutrition, 2013, 64, 36-43.	2.8	57
40	Comparative studies on the anti-tumor activities of high temperature- and pH-modified citrus pectins. Food and Function, 2013, 4, 960.	4.6	33
41	The Inhibitory Effects of a Rhamnogalacturonan Ι (RG-I) Domain from Ginseng Pectin on Galectin-3 and Its Structure-Activity Relationship. Journal of Biological Chemistry, 2013, 288, 33953-33965.	3.4	111
42	A novel ginsenoside-hydrolyzing enzyme from <i>Penicillium oxalicum </i> and its application in ginsenoside Rd production. Biocatalysis and Biotransformation, 2013, 31, 305-312.	2.0	2
43	Neuroprotective effects of ginseng pectin through the activation of ERK/MAPK and Akt survival signaling pathways. Molecular Medicine Reports, 2012, 5, 1185-90.	2.4	18
44	Structural characterization and immunostimulatory activity of a novel linear α-(1 â†' 6)-D-glucan isolated from Panax ginseng C. A. Meyer. Glycoconjugate Journal, 2012, 29, 357-364.	d 2.7	30
45	The Two Endocytic Pathways Mediated by the Carbohydrate Recognition Domain and Regulated by the Collagen-like Domain of Galectin-3 in Vascular Endothelial Cells. PLoS ONE, 2012, 7, e52430.	2.5	40
46	Analysis of the neutral polysaccharide fraction of MCP and its inhibitory activity on galectin-3. Glycoconjugate Journal, 2012, 29, 159-165.	2.7	57
47	Analysis of Herba Asari polysaccharides and their immunological activity. Carbohydrate Polymers, 2012, 87, 551-556.	10.2	15
48	Further analysis of the structure and immunological activity of an RG-I type pectin from Panax ginseng. Carbohydrate Polymers, 2012, 89, 519-525.	10.2	76
49	Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Medical Oncology, 2011, 28, 175-181.	2.5	96
50	Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides. Carbohydrate Polymers, 2010, 81, 340-347.	10.2	38
51	The inhibitory effect of ginseng pectin on L-929 cell migration. Archives of Pharmacal Research, 2010, 33, 681-689.	6.3	18
52	A highly selective ginsenoside Rb1-hydrolyzing \hat{l}^2 -d-glucosidase from Cladosporium fulvum. Process Biochemistry, 2010, 45, 897-903.	3.7	15
53	Rhamnogalacturonan I domains from ginseng pectin. Carbohydrate Polymers, 2010, 79, 811-817.	10.2	85
54	Antitumor Activities and Immunomodulatory Effects of Ginseng Neutral Polysaccharides in Combination with 5-Fluorouracil. Journal of Medicinal Food, 2010, 13, 270-277.	1.5	88

Сиіниа Таі

#	Article	IF	CITATIONS
55	Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). Journal of Industrial Microbiology and Biotechnology, 2009, 36, 721-726.	3.0	53
56	A novel ginsenoside Rb1-hydrolyzing \hat{l}^2 -d-glucosidase from Cladosporium fulvum. Process Biochemistry, 2009, 44, 612-618.	3.7	36
57	Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohydrate Polymers, 2009, 77, 544-552.	10.2	205
58	A novel water-soluble \hat{l}^2 -($1\hat{a}\dagger'\hat{o}$)-d-glucan isolated from the fruit bodies of Bulgaria inquinans (Fries). Carbohydrate Research, 2009, 344, 1254-1258.	2.3	21
59	Preparation of a glucan from the roots of Rubus crataegifolius Bge. and its immunological activity. Carbohydrate Research, 2009, 344, 2512-2518.	2.3	39