Lars Björndahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4650255/publications.pdf

Version: 2024-02-01

304743 345221 2,020 56 22 36 h-index citations g-index papers 71 71 71 2018 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidanceâ€"challenges and future research opportunities. Human Reproduction Update, 2017, 23, 660-680.	10.8	320
2	Human sperm chromatin stabilization: a proposed model including zinc bridges. Molecular Human Reproduction, 2010, 16, 23-29.	2.8	155
3	Sperm proteome mapping of a patient who experienced failed fertilization at IVF reveals altered expression of at least 20 proteins compared with fertile donors: Case report. Human Reproduction, 2004, 19, 1438-1447.	0.9	141
4	â€~How to count sperm properly': checklist for acceptability of studies based on human semen analysis. Human Reproduction, 2016, 31, dev305.	0.9	120
5	Sequence of ejaculation affects the spermatozoon as a carrier and its message. Reproductive BioMedicine Online, 2003, 7, 440-448.	2.4	80
6	The sixth edition of the WHO Laboratory Manual for the Examination and Processing of Human Semen: ensuring quality and standardization in basic examination of human ejaculates. Fertility and Sterility, 2022, 117, 246-251.	1.0	77
7	Distribution of semen examination results 2020 – A follow up of data collated for the WHO semen analysis manual 2010. Andrology, 2021, 9, 817-822.	3.5	65
8	What is normal semen quality? On the use and abuse of reference limits for the interpretation of semen analysis results. Human Fertility, 2011, 14, 179-186.	1.7	60
9	Zinc preserves an inherent capacity for human sperm chromatin decondensation. Acta Physiologica Scandinavica, 1985, 124, 195-200.	2.2	56
10	The usefulness and significance of assessing rapidly progressive spermatozoa. Asian Journal of Andrology, 2010, 12, 33-35.	1.6	52
11	What should it take to describe a substance or product as 'sperm-safe'. Human Reproduction Update, 2013, 19, i1-i45.	10.8	50
12	A model for the importance of zinc in the dynamics of human sperm chromatin stabilization after ejaculation in relation to sperm DNA vulnerability. Systems Biology in Reproductive Medicine, 2011, 57, 86-92.	2.1	49
13	Zinc in Sperm Chromatin and Chromatin Stability in Fertile Men and Men in Barren Unions. Scandinavian Journal of Urology and Nephrology, 1988, 22, 1-6.	1.4	43
14	SARSâ€CoVâ€2 pandemic and repercussions for male infertility patients: A proposal for the individualized provision of andrological services. Andrology, 2021, 9, 10-18.	3.5	41
15	Protein tyrosine phosphorylation, hyperactivation and progesterone-induced acrosome reaction are enhanced in IVF media: an effect that is not associated with an increase in protein kinase A activation. Molecular Human Reproduction, 2005, 11 , $523-529$.	2.8	39
16	Loss of an intrinsic capacity for human sperm chromatin decondensation. Acta Physiologica Scandinavica, 1985, 124, 189-194.	2.2	35
17	Evaluation of a disposable plastic Neubauer counting chamber for semen analysis. Fertility and Sterility, 2009, 91, 627-631.	1.0	32
18	Nuclear zinc in human epididymal and ejaculated spermatozoa. Acta Physiologica Scandinavica, 1985, 125, 297-303.	2.2	29

#	Article	IF	CITATIONS
19	The human sperm nucleus takes up zinc at ejaculation. Journal of Developmental and Physical Disabilities, 1986, 9, 77-80.		29
20	Accuracy of sperm-cervical mucus penetration tests in evaluating sperm motility in semen: a systematic quantitative review. Human Reproduction, 2003, 18, 1037-1046.		29
21	Evolution of the WHO "Semen―processing manual from the first (1980) to the sixth edition (2021). Fertility and Sterility, 2022, 117, 237-245.		24
22	Importance of zinc for human sperm headâ€ŧail connection. Acta Physiologica Scandinavica, 1982, 116, 51-55.		23
23	Structure of Chromatin in Spermatozoa. Advances in Experimental Medicine and Biology, 2014, 791, 1-11.		22
24	Evolving minimum standards in responsible international sperm donor offspring quota. Reproductive BioMedicine Online, 2015, 30, 568-580.	2.4	17
25	Assessment of Oligo-Chitosan Biocompatibility toward Human Spermatozoa. ACS Applied Materials & amp; Interfaces, 2019, 11, 46572-46584.	8.0	12
26	A paradigmatic shift in the care of male factor infertility: how can the recommendations for basic semen examination in the sixth edition of the WHO manual and the ISO 23162:2021 standard help?. Reproductive BioMedicine Online, 2022, 45, 731-736.	2.4	11
27			

#	Article	IF	Citations
37	Reply: Development of a novel home sperm test – What are the limitations?. Human Reproduction, 2006, 21, 3030-3031.	0.9	1
38	Sperm cryobanking. , 2010, , 189-218.		1
39	Extended semen analysis. , 2010, , 77-112.		1
40	Sperm function tests. , 2010, , 113-146.		1
41	Semen Analysis: Essentials for the Clinician. , 2010, , 379-388.		1
42	Basic semen analysis., 2010,, 33-76.		0
43	Basic physiology. , 0, , 5-32.		O
44	Preparation of surgically retrieved spermatozoa., 0,, 219-226.		0
45	Reproductive toxicology. , 2010, , 257-260.		O
46	Tests of sperm–cervical mucus interaction. , 2010, , 147-166.		0
47	The Semen Analysis: The Investigation of the Human Ejaculate. Endocrinology, 2017, , 535-554.	0.1	O
48	On the Indispensability for Standardization of the Basic Examination of Human Semen., 2021,, 323-330.		0
49	Is Decreasing Sperm Concentrations a Sign of a General Decay in Fertility Potential?., 2021,, 39-45.		O
50	Standard Semen Examination: Manual Semen Analysis. , 2021, , 6-10.		0
51	The Semen Analysis: The Investigation of the Human Ejaculate. Endocrinology, 2017, , 1-20.	0.1	O
52	Basic Semen Examination. , 2022, , 34-80.		0
53	Quality Management and Accreditation. , 2022, , 262-289.		0
54	Computer-Aided Sperm Analysis. , 2022, , 130-154.		0

#	Article	IF	CITATIONS
55	Basic Physiology. , 2022, , 5-33.		O
56	Reproductive Toxicology., 2022,, 303-306.		0