
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4649301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of COVID-19 vaccination and the role of individuals with a high number of contacts: A model based approach. PLoS ONE, 2022, 17, e0262433.	2.5	3
2	Hidden transition in multiplex networks. Scientific Reports, 2022, 12, 3973.	3.3	1
3	Generation and Disruption of Circadian Rhythms in the Suprachiasmatic Nucleus: A Core-Shell Model. Journal of Biological Rhythms, 2022, 37, 545-561.	2.6	4
4	Enhanced robustness of single-layer networks with redundant dependencies. Physical Review E, 2021, 103, 022321.	2.1	4
5	Topological phase transition in the periodically forced Kuramoto model. Chaos, Solitons and Fractals, 2021, 145, 110816.	5.1	3
6	Impact of field heterogeneity on the dynamics of the forced Kuramoto model. Physical Review E, 2021, 104, 024313.	2.1	4
7	Effect of Initial Configuration of Weights on Training and Function of Artificial Neural Networks. Mathematics, 2021, 9, 2246.	2.2	7
8	A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil. Chaos, Solitons and Fractals, 2021, 152, 111359.	5.1	11
9	Quantifying dissimilarities between heterogeneous networks with community structure. Physica A: Statistical Mechanics and Its Applications, 2021, 588, 126574.	2.6	2
10	Approximating nonbacktracking centrality and localization phenomena in large networks. Physical Review E, 2021, 104, 054306.	2.1	3
11	A Transnational and Transregional Study of the Impact and Effectiveness of Social Distancing for COVID-19 Mitigation. Entropy, 2021, 23, 1530.	2.2	3
12	Exotic critical behavior of weak multiplex percolation. Physical Review E, 2020, 102, 032301.	2.1	6
13	Choosing among alternative histories of a tree. Physical Review E, 2020, 102, 032304.	2.1	1
14	Filtering Statistics on Networks. Entropy, 2020, 22, 1149.	2.2	0
15	Complex Distributions Emerging in Filtering and Compression. Physical Review X, 2020, 10, .	8.9	1
16	The central role of peripheral nodes in directed network dynamics. Scientific Reports, 2019, 9, 13162.	3.3	8
17	Structural stability of interaction networks against negative external fields. Physical Review E, 2018, 97, 042311.	2.1	4
18	Finding the Optimal Nets for Self-Folding Kirigami. Physical Review Letters, 2018, 120, 188001.	7.8	9

#	Article	IF	CITATIONS
19	Complex network view of evolving manifolds. Physical Review E, 2018, 97, 032316.	2.1	17
20	Targeted damage to interdependent networks. Physical Review E, 2018, 98, .	2.1	20
21	Mapping the Structure of Directed Networks: Beyond the Bow-Tie Diagram. Physical Review Letters, 2017, 118, 078301.	7.8	21
22	Construction and analysis of a human testis/sperm-enriched interaction network: Unraveling the PPP1CC2 interactome. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 375-385.	2.4	9
23	Sensitivity of directed networks to the addition and pruning of edges and vertices. Physical Review E, 2017, 96, 022317.	2.1	2
24	Nonbacktracking expansion of finite graphs. Physical Review E, 2017, 95, 042322.	2.1	9
25	Metastable localization of diseases in complex networks. Physical Review E, 2016, 94, 062305.	2.1	13
26	Cycles and clustering in multiplex networks. Physical Review E, 2016, 94, 062308.	2.1	7
27	Scale-free networks with exponent one. Physical Review E, 2016, 94, 022302.	2.1	22
28	Correlated edge overlaps in multiplex networks. Physical Review E, 2016, 94, 012303.	2.1	31
29	Synchronization in the random-field Kuramoto model on complex networks. Physical Review E, 2016, 94, 012308.	2.1	8
30	A Unified Approach to Percolation Processes on Multiplex Networks. Understanding Complex Systems, 2016, , 101-123.	0.6	6
31	Gender Gap in the ERASMUS Mobility Program. PLoS ONE, 2016, 11, e0149514.	2.5	51
32	Critical Dynamics of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:math> -Core Pruning Process. Physical Review X, 2015, 5, .	8.9	31
33	Mutually connected component of networks of networks with replica nodes. Physical Review E, 2015, 91, 012804.	2.1	32
34	Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks. Physical Review E, 2015, 91, 032814.	2.1	34
35	Inverting the Achlioptas rule for explosive percolation. Physical Review E, 2015, 91, 042130.	2.1	8
36	Amyloid precursor protein interaction network in human testis: sentinel proteins for male reproduction. BMC Bioinformatics, 2015, 16, 12.	2.6	32

#	Article	IF	CITATIONS
37	Solution of the explosive percolation quest. II. Infinite-order transition produced by the initial distributions of clusters. Physical Review E, 2015, 91, 032140.	2.1	5
38	Ranking scientists. Nature Physics, 2015, 11, 882-883.	16.7	42
39	Avalanches in Multiplex and Interdependent Networks. Understanding Complex Systems, 2014, , 37-52.	0.6	8
40	Critical phenomena and noise-induced phase transitions in neuronal networks. Physical Review E, 2014, 89, 012701.	2.1	23
41	Solution of the explosive percolation quest: Scaling functions and critical exponents. Physical Review E, 2014, 90, 022145.	2.1	25
42	Noise-enhanced nonlinear response and the role of modular structure for signal detection in neuronal networks. Physical Review E, 2014, 90, 052709.	2.1	9
43	Giant components in directed multiplex networks. Physical Review E, 2014, 90, 052809.	2.1	9
44	Weak percolation on multiplex networks. Physical Review E, 2014, 89, 042801.	2.1	53
45	Critical exponents of the explosive percolation transition. Physical Review E, 2014, 89, 042148.	2.1	17
46	Biased imitation in coupled evolutionary games in interdependent networks. Scientific Reports, 2014, 4, 4436.	3.3	80
47	Characteristics of the Explosive Percolation Transition. Springer Proceedings in Mathematics and Statistics, 2014, , 17-24.	0.2	Ο
48	Kuramoto model with frequency-degree correlations on complex networks. Physical Review E, 2013, 87, .	2.1	88
49	Core organization of directed complex networks. Physical Review E, 2013, 87, .	2.1	12
50	Critical and resonance phenomena in neural networks. , 2013, , .		2
51	Stochastic resonance as an emergent property of neural networks. AIP Conference Proceedings, 2013, ,	0.4	3
52	Neural networks with dynamical synapses: From mixed-mode oscillations and spindles to chaos. AIP Conference Proceedings, 2013, , .	0.4	1
53	Impact of noise and damage on collective dynamics of scale-free neuronal networks. Physical Review E, 2013, 87, .	2.1	10
54	Emergence of scale-free networks from optimization process. Journal of Physics: Conference Series, 2013, 410, 012094.	0.4	0

#	Article	IF	CITATIONS
55	Localization and Spreading of Diseases in Complex Networks. Physical Review Letters, 2012, 109, 128702.	7.8	243
56	Avalanche Collapse of Interdependent Networks. Physical Review Letters, 2012, 109, 248701.	7.8	263
57	Modeling Organizational Information System Architecture Using "Complex Networks" Concepts. , 2012, , .		2
58	k-Core Organization in Complex Networks. Springer Optimization and Its Applications, 2012, , 229-252.	0.9	7
59	Networks as a novel tool for studying team ball sports as complex social systems. Journal of Science and Medicine in Sport, 2011, 14, 170-176.	1.3	157
60	Belief-propagation algorithm and the Ising model on networks with arbitrary distributions of motifs. Physical Review E, 2011, 84, 041144.	2.1	26
61	Heterogeneous <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:math> -core versus bootstrap percolation on complex networks. Physical Review E, 2011, 83, 051134.	2.1	82
62	Critical behavior and correlations on scale-free small-world networks: Application to network design. Physical Review E, 2011, 83, 061149.	2.1	10
63	Statistical mechanics of rumour spreading in network communities. Procedia Computer Science, 2010, 1, 2331-2339.	2.0	28
64	Zero Pearson coefficient for strongly correlated growing trees. Physical Review E, 2010, 81, 031135.	2.1	33
65	Stochastic cellular automata model of neural networks. Physical Review E, 2010, 81, 061921.	2.1	39
66	Critical phenomena on heterogeneous small-world networks. Europhysics Letters, 2010, 92, 40013.	2.0	2
67	First- and second-order phase transitions in Ising models on small-world networks: Simulations and comparison with an effective field theory. Physical Review E, 2010, 82, 011141.	2.1	12
68	Bootstrap percolation on complex networks. Physical Review E, 2010, 82, 011103.	2.1	124
69	Explosive Percolation Transition is Actually Continuous. Physical Review Letters, 2010, 105, 255701.	7.8	220
70	Communication and correlation among communities. Physical Review E, 2009, 80, 011142.	2.1	13
71	Growing community networks with local events. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 1273-1278.	2.6	12
72	Small-world of communities: communication and correlation of the meta-network. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, L08004.	2.3	1

#	Article	IF	CITATIONS
73	Travel and tourism: Into a complex network. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 2963-2971.	2.6	70
74	Phase diagram of an Ising model with competitive interactions on a Husimi tree and its disordered counterpart. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 2777-2792.	2.6	19
75	Critical phenomena in complex networks. Reviews of Modern Physics, 2008, 80, 1275-1335.	45.6	1,730
76	Transition from small to large world in growing networks. Europhysics Letters, 2008, 81, 30004.	2.0	17
77	Diluted antiferromagnet in a ferromagnetic environment. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 145002.	2.1	9
78	Nested subgraphs of complex networks. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 385003.	2.1	8
79	Solvable metric growing networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008, P12002.	2.3	2
80	Effective field theory for models defined over small-world networks: First- and second-order phase transitions. Physical Review E, 2008, 78, 031102.	2.1	12
81	Organization of modular networks. Physical Review E, 2008, 78, 056106.	2.1	20
82	Social Networking for Pervasive Adaptation. , 2008, , .		11
83	Laplacian spectra of, and random walks on, complex networks: Are scale-free architectures really important?. Physical Review E, 2008, 77, 036115.	2.1	78
84	Simple reaction-diffusion population model on scale-free networks. Physical Review E, 2008, 78, 047101.	2.1	3
85	Percolation on correlated networks. Physical Review E, 2008, 78, 051105.	2.1	92
86	Weighted and Directed Network on Traveling Patterns. Lecture Notes in Computer Science, 2008, , 145-154.	1.3	5
87	The interplay of universities and industry through the FP5 network. New Journal of Physics, 2007, 9, 183-183.	2.9	13
88	Berezinskii-Kosterlitz-Thouless-like transition in the Potts model on an inhomogeneous annealed network. Physical Review E, 2007, 75, 041112.	2.1	20
89	Impacts of preference and geography on epidemic spreading. Physical Review E, 2007, 76, 056109.	2.1	32
90	On contour arguments for the three state Potts model with competing interactions on a semi-infinite Cayley tree. Journal of Mathematical Physics, 2007, 48, 013301.	1.1	14

#	Article	IF	CITATIONS
91	Onp-adic Gibbs measures of the countable state Potts model on the Cayley tree. Nonlinearity, 2007, 20, 2923-2937.	1.4	47
92	International tourism network. , 2007, , .		1
93	The network of scientific collaborations within the European framework programme. Physica A: Statistical Mechanics and Its Applications, 2007, 384, 675-683.	2.6	20
94	On the chaotic behavior of a generalized logistic p-adic dynamical system. Journal of Differential Equations, 2007, 243, 125-145.	2.2	8
95	On Chaos of a Cubic p-adic Dynamical System. Progress in Nonlinear Differential Equations and Their Application, 2007, , 305-315.	0.9	0
96	k-Core Organization of Complex Networks. Physical Review Letters, 2006, 96, 040601.	7.8	525
97	k-core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects. Physical Review E, 2006, 73, 056101.	2.1	151
98	On Phase Transitions for p-Adic Potts Model with Competing Interactions on a Cayley Tree. AIP Conference Proceedings, 2006, , .	0.4	6
99	Frequency of occurrence of numbers in the World Wide Web. Physica A: Statistical Mechanics and Its Applications, 2006, 360, 548-556.	2.6	34
100	-core architecture and -core percolation on complex networks. Physica D: Nonlinear Phenomena, 2006, 224, 7-19.	2.8	38
101	Bethe Ansatz Solution of Discrete Time Stochastic Processes with Fully Parallel Update. Journal of Statistical Physics, 2006, 123, 125-166.	1.2	24
102	On the three state Potts model with competing interactions on the Bethe lattice. Journal of Statistical Mechanics: Theory and Experiment, 2006, 2006, P08012-P08012.	2.3	29
103	Degree-dependent intervertex separation in complex networks. Physical Review E, 2006, 73, 056122.	2.1	31
104	Evolving Weighted Scale-Free Networks. AIP Conference Proceedings, 2005, , .	0.4	14
105	Correlations in interacting systems with a network topology. Physical Review E, 2005, 72, 066130.	2.1	10
106	Organization of Complex Networks without Multiple Connections. Physical Review Letters, 2005, 95, 195701.	7.8	20
107	Scale-free network with Boolean dynamics as a function of connectivity. Physical Review E, 2004, 70, 066140.	2.1	17
108	Roughness of sandpile surfaces. Physical Review E, 2004, 69, 031105.	2.1	3

#	Article	IF	CITATIONS
109	Potts model on complex networks. European Physical Journal B, 2004, 38, 177-182.	1.5	63
110	Virtual Round Table on ten leading questions for network research. European Physical Journal B, 2004, 38, 143-145.	1.5	43
111	Random networks: eigenvalue spectra. Physica A: Statistical Mechanics and Its Applications, 2004, 338, 76-83.	2.6	19
112	Theory of Random Networks and Their Role in Communications Networks. , 2004, , 69-92.		1
113	Metric structure of random networks. Nuclear Physics B, 2003, 653, 307-338.	2.5	78
114	Principles of statistical mechanics of uncorrelated random networks. Nuclear Physics B, 2003, 666, 396-416.	2.5	73
115	Critical phenomena in networks. Physical Review E, 2003, 67, 026123.	2.1	88
116	Spectra of complex networks. Physical Review E, 2003, 68, 046109.	2.1	180
117	Effect of Accelerated Growth on Networks Dynamics. Lecture Notes in Physics, 2003, , 88-113.	0.7	0
118	Monte Carlo study of the elastic interaction in heteroepitaxial growth. Physical Review E, 2002, 65, 061602.	2.1	4
119	Multifractal properties of growing networks. Europhysics Letters, 2002, 57, 334-340.	2.0	23
120	Evolution of networks. Advances in Physics, 2002, 51, 1079-1187.	14.4	2,449
121	Pseudofractal scale-free web. Physical Review E, 2002, 65, 066122.	2.1	410
122	Ising model on networks with an arbitrary distribution of connections. Physical Review E, 2002, 66, 016104.	2.1	270
123	Hierarchical social networks and information flow. Physica A: Statistical Mechanics and Its Applications, 2002, 316, 695-708.	2.6	27
124	Size-dependent degree distribution of a scale-free growing network. Physical Review E, 2001, 63, 062101.	2.1	204
125	Time of avalanche mixing of granular materials in a half filled drum. European Physical Journal E, 2001, 5, 441-444.	1.6	1
126	Language as an evolving word web. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2603-2606.	2.6	202

#	Article	IF	CITATIONS
127	Static critical behavior in the inactive phase of the pair contact process. Physical Review E, 2001, 65, 016111.	2.1	8
128	Anomalous behavior of the contact process with aging. Physical Review E, 2001, 63, 046107.	2.1	9
129	Comment on "Breakdown of the Internet under Intentional Attack― Physical Review Letters, 2001, 87, 219801.	7.8	38
130	Giant strongly connected component of directed networks. Physical Review E, 2001, 64, 025101.	2.1	165
131	Scaling properties of scale-free evolving networks: â€,Continuous approach. Physical Review E, 2001, 63, 056125.	2.1	178
132	Effect of the accelerating growth of communications networks on their structure. Physical Review E, 2001, 63, 025101.	2.1	157
133	Anomalous percolation properties of growing networks. Physical Review E, 2001, 64, 066110.	2.1	89
134	Exactly solvable small-world network. Europhysics Letters, 2000, 50, 1-7.	2.0	64
135	Scaling behaviour of developing and decaying networks. Europhysics Letters, 2000, 52, 33-39.	2.0	178
136	Bak-Sneppen model near zero dimension. Physical Review E, 2000, 62, 295-298.	2.1	14
137	Evolution of networks with aging of sites. Physical Review E, 2000, 62, 1842-1845.	2.1	354
138	Evolution of a sandpile in a thick-flow regime. Physical Review E, 2000, 61, 2909-2919.	2.1	4
139	Structure of Growing Networks with Preferential Linking. Physical Review Letters, 2000, 85, 4633-4636.	7.8	1,038
140	Critical behavior of models with infinitely many absorbing states. Brazilian Journal of Physics, 2000, 30, 105-112.	1.4	2
141	How Sandpiles Spill: Sandpile Problem in a Thick Flow Regime. Physical Review Letters, 1999, 83, 2946-2949.	7.8	8
142	Vortex dynamics in a three-state model under cyclic dominance. Physical Review E, 1999, 60, 3776-3780.	2.1	31
143	Influence of island diffusion on submonolayer epitaxial growth. Physical Review B, 1999, 59, 15950-15958.	3.2	45
144	A parity conserving dimer model with infinitely many absorbing states. European Physical Journal B, 1999, 12, 123-127.	1.5	18

#	Article	IF	CITATIONS
145	Logarithmic islanding in submonolayer epitaxial growth. European Physical Journal B, 1998, 4, 401-404.	1.5	28
146	Relaxation of initial conditions in systems with infinitely many absorbing states. Physical Review E, 1998, 58, 7020-7026.	2.1	21
147	Short-time dynamics of a two-dimensional majority vote model. Physical Review E, 1998, 57, 108-110.	2.1	33
148	Crossover from directed percolation to compact directed percolation. Physical Review E, 1996, 54, R3071-R3074.	2.1	11
149	Generalized scaling for models with multiple absorbing states. Journal of Physics A, 1994, 27, 3019-3028.	1.6	121
150	Exact Solution of Dissociative "Hot Dimers―with Reaction in One Dimension. Europhysics Letters, 1994, 27, 227-233.	2.0	1
151	Nonequilibrium spin models with Ising universal behaviour. Journal of Physics A, 1993, 26, 2317-2324.	1.6	114
152	Nonequilibrium stationary states in the 1-d BEG model: first- and second-order phase transitions. Journal of Physics A, 1993, 26, 3853-3862.	1.6	0
153	Competing dynamics in the one-dimensional Blume-Emery-Griffiths model: Hydrodynamic equations. Physical Review E, 1993, 48, 1738-1743.	2.1	0
154	Nonuniversal critical behaviour in the 1D BEG model with Kawasaki dynamics. Journal of Physics A, 1992, 25, 73-83.	1.6	4
155	Dynamics of the infinite-ranged Potts model. Journal of Statistical Physics, 1991, 64, 653-672.	1.2	46