Yi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4648935/publications.pdf

Version: 2024-02-01

236925 243625 4,120 44 25 44 h-index citations g-index papers 45 45 45 6151 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	MdMADS6 Recruits Histone Deacetylase MdHDA19 to Repress the Expression of the Carotenoid Synthesis-Related Gene MdCCD1 during Fruit Ripening. Plants, 2022, 11, 668.	3.5	7
2	Genotyping-by-sequencing to determine the genetic structure of a Tibetan medicinal plant Swertia mussotii Franch Genetic Resources and Crop Evolution, 2021, 68, 469-484.	1.6	3
3	Interpopulation differences of retroduplication variations (RDVs) in rice retrogenes and their phenotypic correlations. Computational and Structural Biotechnology Journal, 2021, 19, 600-611.	4.1	1
4	Venn diagrams in bioinformatics. Briefings in Bioinformatics, 2021, 22, .	6.5	84
5	RetroScan: An Easy-to-Use Pipeline for Retrocopy Annotation and Visualization. Frontiers in Genetics, 2021, 12, 719204.	2.3	4
6	SilkDB 3.0: visualizing and exploring multiple levels of data for silkworm. Nucleic Acids Research, 2020, 48, D749-D755.	14.5	59
7	Synergism of open chromatin regions involved in regulating genes in Bombyx mori. Insect Biochemistry and Molecular Biology, 2019, 110, 10-18.	2.7	6
8	OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research, 2019, 47, W52-W58.	14.5	661
9	Unprecedented [5.5.5.6] Dioxafenestrane Ring Construction in Fungal Insecticidal Sesquiterpene Biosynthesis. Angewandte Chemie - International Edition, 2019, 58, 6569-6573.	13.8	27
10	OUP accepted manuscript. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	50
11	Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4284-E4293.	7.1	391
12	Dynamic Evolution of α-Gliadin Prolamin Gene Family in Homeologous Genomes of Hexaploid Wheat. Scientific Reports, 2018, 8, 5181.	3.3	68
13	Gene Duplication and Evolution Dynamics in the Homeologous Regions Harboring Multiple Prolamin and Resistance Gene Families in Hexaploid Wheat. Frontiers in Plant Science, 2018, 9, 673.	3.6	84
14	Modular assembly of transposable element arrays by microsatellite targeting in the guayule and rice genomes. BMC Genomics, 2018, 19, 271.	2.8	7
15	Deep sequencing and transcriptome analyses to identify genes involved in secoiridoid biosynthesis in the Tibetan medicinal plant Swertia mussotii. Scientific Reports, 2017, 7, 43108.	3.3	56
16	St ₂ -80: a new FISH marker for St genome and genome analysis in Triticeae. Genome, 2017, 60, 553-563.	2.0	17
17	New insights into structural organization and gene duplication in a 1.75â€Mb genomic region harboring the αâ€gliadin gene family in Aegilops tauschii , the source of wheat D genome. Plant Journal, 2017, 92, 571-583.	5.7	29
18	Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 2017, 551, 498-502.	27.8	563

#	Article	IF	Citations
19	PIECE 2.0: an update for the plant gene structure comparison and evolution database. Nucleic Acids Research, 2017, 45, 1015-1020.	14.5	24
20	Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes. Journal of Genetics and Genomics, 2017, 44, 51-61.	3.9	25
21	PlantRGDB: A Database of Plant Retrocopied Genes. Plant and Cell Physiology, 2017, 58, pcw210.	3.1	6
22	A wholeâ€genome, radiation hybrid mapping resource of hexaploid wheat. Plant Journal, 2016, 86, 195-207.	5.7	23
23	Rapid evolutionary dynamics in a 2.8â€Mb chromosomal region containing multiple prolamin and resistance gene families in <i>Aegilops tauschii</i> . Plant Journal, 2016, 87, 495-506.	5.7	33
24	Draft Genome Sequence of $\$ Agrobacterium rhizogenes $\$ Strain NCPPB2659. Genome Announcements, 2016, 4, .	0.8	11
25	MetaCoMET: a web platform for discovery and visualization of the core microbiome. Bioinformatics, 2016, 32, 3469-3470.	4.1	80
26	GSP: a web-based platform for designing genome-specific primers in polyploids. Bioinformatics, 2016, 32, 2382-2383.	4.1	30
27	Fastâ€forward genetics by radiation hybrids to saturate the locus regulating nuclear–cytoplasmic compatibility in <i>Triticum</i> . Plant Biotechnology Journal, 2016, 14, 1716-1726.	8.3	9
28	Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes. BMC Genomics, 2015, 16, 800.	2.8	31
29	OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research, 2015, 43, W78-W84.	14.5	612
30	Development of a D genome specific marker resource for diploid and hexaploid wheat. BMC Genomics, 2015, 16, 646.	2.8	6
31	WheatExp: an RNA-seq expression database for polyploid wheat. BMC Plant Biology, 2015, 15, 299.	3.6	124
32	AIM: a comprehensive Arabidopsis interactome module database and related interologs in plants. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau117.	3.0	8
33	NetVenn: an integrated network analysis web platform for gene lists. Nucleic Acids Research, 2014, 42, W161-W166.	14.5	29
34	A New Tomato NAC (NAM/ATAF1/2/CUC2) Transcription Factor, SINAC4, Functions as a Positive Regulator of Fruit Ripening and Carotenoid Accumulation. Plant and Cell Physiology, 2014, 55, 119-135.	3.1	296
35	Constructing regulatory networks to identify biomarkers for insulin resistance. Gene, 2014, 539, 68-74.	2.2	9
36	A Tomato MADS-Box Transcription Factor, SIMADS1, Acts as a Negative Regulator of Fruit Ripening. Plant Physiology, 2013, 163, 1026-1036.	4.8	161

#	Article	IF	CITATIONS
37	A 4-gigabase physical map unlocks the structure and evolution of the complex genome of $\langle i \rangle$ Aegilops tauschii, $\langle i \rangle$ the wheat D-genome progenitor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7940-7945.	7.1	214
38	PIECE: a database for plant gene structure comparison and evolution. Nucleic Acids Research, 2013, 41, D1159-D1166.	14.5	50
39	Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia frigida and Phylogenetic Relationships with Other Plants. PLoS ONE, 2013, 8, e57533.	2.5	122
40	Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii. BMC Genomics, 2012, 13, 597.	2.8	33
41	Exploring the diploid wheat ancestral A genome through sequence comparison at the high-molecular-weight glutenin locus region. Molecular Genetics and Genomics, 2012, 287, 855-866.	2.1	7
42	Characterizing the citrus cultivar Carrizo genome through 454 shotgun sequencing. Genome, 2011, 54, 1005-1015.	2.0	3
43	Function Annotation of an SBP-box Gene in Arabidopsis Based on Analysis of Co-expression Networks and Promoters. International Journal of Molecular Sciences, 2009, 10, 116-132.	4.1	55
44	A systems biology analysis of protein–protein interactions in the APOBEC family. Life Sciences, 2008, 83, 521-530.	4.3	2