Laura K Fonken

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4648531/publications.pdf

Version: 2024-02-01

57 4,189 30 papers citations h-index

57 57 57 4946
all docs docs citations times ranked citing authors

56

g-index

#	Article	IF	CITATIONS
1	Mycobacterium vaccae immunization in rats ameliorates features ofÂage-associated microglia activation in the amygdala and hippocampus. Scientific Reports, 2022, 12, 2165.	3.3	8
2	Distinct immune and transcriptomic profiles in dominant versus subordinate males in mouse social hierarchies. Brain, Behavior, and Immunity, 2022, 103, 130-144.	4.1	20
3	Comparing the effects of two different strains of mycobacteria, Mycobacterium vaccae NCTC 11659 and M. vaccae ATCC 15483, on stress-resilient behaviors and lipid-immune signaling in rats. Brain, Behavior, and Immunity, 2021, 91, 212-229.	4.1	12
4	Gulf War Illnessâ€related Chemicals Increase Hepatic Steatosis and Enhance Chronic Ethanolâ€induced Liver Damage in Mice. FASEB Journal, 2021, 35, .	0.5	O
5	Light at night during development in mice has modest effects on adulthood behavior and neuroimmune activation. Behavioural Brain Research, 2021, 405, 113171.	2.2	15
6	Aging and miR-155 in mice influence survival and neuropathic pain after spinal cord injury. Brain, Behavior, and Immunity, 2021, 97, 365-370.	4.1	28
7	Chronic circadian phase advance in male mice induces depressive-like responses and suppresses neuroimmune activation. Brain, Behavior, & Immunity - Health, 2021, 17, 100337.	2.5	7
8	The behavioral and neurochemical effects of an inescapable stressor are time of day dependent. Stress, 2020, 23, 405-416.	1.8	5
9	Dim light at night exacerbates stroke outcome. European Journal of Neuroscience, 2020, 52, 4139-4146.	2.6	10
10	Alzheimer's Disease: Protective Effects of Mycobacterium vaccae, a Soil-Derived Mycobacterium with Anti-Inflammatory and Anti-Tubercular Properties, on the Proteomic Profiles of Plasma and Cerebrospinal Fluid in Rats. Journal of Alzheimer's Disease, 2020, 78, 965-987.	2.6	4
11	Acute stress induces chronic neuroinflammatory, microglial and behavioral priming: A role for potentiated NLRP3 inflammasome activation. Brain, Behavior, and Immunity, 2020, 89, 32-42.	4.1	28
12	Could Probiotics Be Used to Mitigate Neuroinflammation?. ACS Chemical Neuroscience, 2019, 10, 13-15.	3.5	25
13	Circadian regulation of depression: A role for serotonin. Frontiers in Neuroendocrinology, 2019, 54, 100746.	5.2	101
14	Dim light at night impairs recovery from global cerebral ischemia. Experimental Neurology, 2019, 317, 100-109.	4.1	23
15	Microglia: Neuroimmune-sensors of stress. Seminars in Cell and Developmental Biology, 2019, 94, 176-185.	5.0	86
16	Anxiety in obesity: Is neuroinflammation the critical link?. Brain, Behavior, and Immunity, 2019, 78, 7-8.	4.1	2
17	Spinal Cord Injury in Rats Dysregulates Diurnal Rhythms of Fecal Output and Liver Metabolic Indicators. Journal of Neurotrauma, 2019, 36, 1923-1934.	3.4	16
18	Circadian misalignment has differential effects on affective behavior following exposure to controllable or uncontrollable stress. Behavioural Brain Research, 2019, 359, 440-445.	2.2	16

#	Article	IF	CITATIONS
19	Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain, Behavior, and Immunity, 2018, 70, 257-267.	4.1	85
20	Central IKK2 Inhibition Ameliorates Air Pollution-Mediated Hepatic Glucose and Lipid Metabolism Dysfunction in Mice With Type II Diabetes. Toxicological Sciences, 2018, 164, 240-249.	3.1	27
21	MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist, 2018, 24, 221-245.	3 . 5	184
22	Stress disinhibits microglia via down-regulation of CD200R: A mechanism of neuroinflammatory priming. Brain, Behavior, and Immunity, 2018, 69, 62-73.	4.1	58
23	Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: Attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Brain, Behavior, and Immunity, 2018, 73, 352-363.	4.1	66
24	Mycobacterium vaccae immunization protects aged rats from surgery-elicited neuroinflammation and cognitive dysfunction. Neurobiology of Aging, 2018, 71, 105-114.	3.1	45
25	Stress and aging act through common mechanisms to elicit neuroinflammatory priming. Brain, Behavior, and Immunity, 2018, 73, 133-148.	4.1	57
26	Glial Cells Shape Pathology and Repair After Spinal Cord Injury. Neurotherapeutics, 2018, 15, 554-577.	4.4	147
27	Spinal Cord Injury in Rats Disrupts the Circadian System. ENeuro, 2018, 5, ENEURO.0328-18.2018.	1.9	32
28	Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization. Neurobiology of Aging, 2016, 47, 102-112.	3.1	54
29	The Alarmin HMGB1 Mediates Age-Induced Neuroinflammatory Priming. Journal of Neuroscience, 2016, 36, 7946-7956.	3.6	103
30	miR-155 Deletion in Female Mice Prevents Diet-Induced Obesity. Scientific Reports, 2016, 6, 22862.	3.3	83
31	Stress-induced neuroinflammatory priming is time of day dependent. Psychoneuroendocrinology, 2016, 66, 82-90.	2.7	58
32	MicroRNA-155 deletion reduces anxiety- and depressive-like behaviors in mice. Psychoneuroendocrinology, 2016, 63, 362-369.	2.7	50
33	Effects of light exposure at night during development. Current Opinion in Behavioral Sciences, 2016, 7, 33-39.	3.9	26
34	The redox state of the alarmin HMGB1 is a pivotal factor in neuroinflammatory and microglial priming: A role for the NLRP3 inflammasome. Brain, Behavior, and Immunity, 2016, 55, 215-224.	4.1	106
35	Endocrine Effects of Circadian Disruption. Annual Review of Physiology, 2016, 78, 109-131.	13.1	103
36	Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain, Behavior, and Immunity, 2015, 45, 171-179.	4.1	207

#	Article	IF	CITATIONS
37	Exercise attenuates the metabolic effects of dim light at night. Physiology and Behavior, 2014, 124, 33-36.	2.1	24
38	The Effects of Light at Night on Circadian Clocks and Metabolism. Endocrine Reviews, 2014, 35, 648-670.	20.1	333
39	Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behavioural Brain Research, 2013, 243, 74-78.	2.2	80
40	Dim Light at Night Exaggerates Weight Gain and Inflammation Associated With a High-Fat Diet in Male Mice. Endocrinology, 2013, 154, 3817-3825.	2.8	96
41	Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain, Behavior, and Immunity, 2013, 34, 159-163.	4.1	86
42	Evidence for feedback control of pineal melatonin secretion. Neuroscience Letters, 2013, 542, 123-125.	2.1	28
43	Dim Light at Night Disrupts Molecular Circadian Rhythms and Increases Body Weight. Journal of Biological Rhythms, 2013, 28, 262-271.	2.6	219
44	Dim Nighttime Light Impairs Cognition and Provokes Depressive-Like Responses in a Diurnal Rodent. Journal of Biological Rhythms, 2012, 27, 319-327.	2.6	156
45	Dim Light at Night Increases Immune Function in Nile Grass Rats, a Diurnal Rodent. Chronobiology International, 2012, 29, 26-34.	2.0	40
46	Photoperiod-dependent effects of neuronal nitric oxide synthase inhibition on aggression in Siberian hamsters. Hormones and Behavior, 2012, 61, 176-180.	2.1	18
47	Short photoperiods attenuate central responses to an inflammogen. Brain, Behavior, and Immunity, 2012, 26, 617-622.	4.1	10
48	Illuminating the deleterious effects of light at night. F1000 Medicine Reports, 2011, 3, 18.	2.9	57
49	Sustained melatonin treatment blocks body mass, pelage, reproductive, and fever responses to short day lengths in female Siberian hamsters. Journal of Pineal Research, 2011, 51, 180-186.	7.4	7
50	Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology, 2011, 36, 1062-1069.	2.7	135
51	Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacology Biochemistry and Behavior, 2011, 100, 25-32.	2.9	43
52	Chronic exposure to dim light at night suppresses immune responses in Siberian hamsters. Biology Letters, 2011, 7, 468-471.	2.3	152
53	Early Life Experiences Affect Adult Delayed-Type Hypersensitivity in Short and Long Photoperiods. Chronobiology International, 2011, 28, 101-108.	2.0	2
54	Light at night increases body mass by shifting the time of food intake. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18664-18669.	7.1	618

Laura K Fonken

#	Article	IF	CITATIONS
55	Environmental enrichment enhances delayed-type hypersensitivity in both short- and long-day Siberian hamsters. Physiology and Behavior, 2010, 99, 638-643.	2.1	4
56	Maternal separation alters social odor preference development in infant mice (Mus musculus) Journal of Comparative Psychology (Washington, D C: 1983), 2010, 124, 295-301.	0.5	8
57	Influence of light at night on murine anxiety- and depressive-like responses. Behavioural Brain Research, 2009, 205, 349-354.	2.2	176