
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/464805/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In memoriam professor Philip Seeman (February 8, 1934-January 9, 2021). Neuropsychopharmacology, 2021, 46, 1229-1230.	5.4	1
2	Effects of daily Δ9-Tetrahydrocannabinol (THC) alone or combined with cannabidiol (CBD) on cognition-based behavior and activity in adolescent nonhuman primates. Drug and Alcohol Dependence, 2021, 221, 108629.	3.2	17
3	Δ-Tetrahydrocannabinol Increases Dopamine D1-D2 Receptor Heteromer and Elicits Phenotypic Reprogramming in Adult Primate Striatal Neurons. IScience, 2020, 23, 100794.	4.1	22
4	Dopamine D1-D2 receptor heteromer expression in key brain regions of rat and higher species: Upregulation in rat striatum after cocaine administration. Neurobiology of Disease, 2020, 143, 105017.	4.4	22
5	THC and CBD blood and brain concentrations following daily administration to adolescent primates. Drug and Alcohol Dependence, 2020, 213, 108129.	3.2	14
6	Sex difference in dopamine D1-D2 receptor complex expression and signaling affects depression- and anxiety-like behaviors. Biology of Sex Differences, 2020, 11, 8.	4.1	49
7	Improving Access to Evidence-Based Medical Treatment for Opioid Use Disorder: Strategies to Address Key Barriers Within the Treatment System. NAM Perspectives, 2020, 2020, .	2.9	90
8	Cannabinoid and Marijuana Neurobiology. , 2020, , 25-47.		0
9	Psychiatry and the Opioid Overdose Crisis. Focus (American Psychiatric Publishing), 2019, 17, 128-133.	0.8	7
10	Tinkering with THC-to-CBD ratios in Marijuana. Neuropsychopharmacology, 2019, 44, 215-216.	5.4	18
11	Associations of Parental Marijuana Use With Offspring Marijuana, Tobacco, and Alcohol Use and Opioid Misuse. JAMA Network Open, 2019, 2, e1916015.	5.9	36
12	The President's Commission on Combating Drug Addiction and the Opioid Crisis: Origins and Recommendations. Clinical Pharmacology and Therapeutics, 2018, 103, 943-945.	4.7	59
13	Pharmacological Research as a Key Component in Mitigating the Opioid Overdose Crisis. Trends in Pharmacological Sciences, 2018, 39, 995-998.	8.7	47
14	Drug use among youth: National survey data support a common liability of all drug use. Preventive Medicine, 2018, 113, 68-73.	3.4	38
15	Are THC Levels in Oral Fluids and Blood Plasma Comparable after Oral Ingestion of Edibles Containing Cannabis or THC?. Clinical Chemistry, 2017, 63, 629-631.	3.2	8
16	The Surge of Opioid Use, Addiction, and Overdoses. JAMA Psychiatry, 2017, 74, 441.	11.0	89
17	Ineffective Policies to Address the Opioid Epidemic—Reply. JAMA Psychiatry, 2017, 74, 974.	11.0	0
18	The Growing Problem of New Psychoactive Substances (NPS). Current Topics in Behavioral Neurosciences, 2016, 32, 1-18.	1.7	51

#	Article	IF	CITATIONS
19	Cannabis and Medicinal Properties. South Dakota Medicine: the Journal of the South Dakota State Medical Association, 2016, No, 34-45.	0.2	0
20	Vesicular Monoamine Transporter 2 Loss in Human Cocaine Abusers Confirmed in Nonhuman Primate Brain. Biological Psychiatry, 2015, 77, 421-422.	1.3	0
21	Dopamine challenge reveals neuroadaptive changes in marijuana abusers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11915-11916.	7.1	3
22	Drug Use and Its Consequences. , 2014, , 1-35.		1
23	History of the Discovery of the Antipsychotic Dopamine D2 Receptor: A Basis for the Dopamine Hypothesis of Schizophrenia. Journal of the History of the Neurosciences, 2013, 22, 62-78.	0.9	85
24	Functional Genomics of Attention-Deficit/Hyperactivity Disorder (ADHD) Risk Alleles on Dopamine Transporter Binding in ADHD and Healthy Control Subjects. Biological Psychiatry, 2013, 74, 84-89.	1.3	44
25	Prescription opioid abuse: challenges and opportunities for payers. American Journal of Managed Care, 2013, 19, 295-302.	1.1	39
26	Synthesis and structure–activity relationship studies of 3-biaryl-8-oxabicyclo[3.2.1]octane-2-carboxylic acid methyl esters. Bioorganic and Medicinal Chemistry, 2012, 20, 2762-2772.	3.0	3
27	Candidate Performance Measures for Screening for, Assessing, and Treating Unhealthy Substance Use in Hospitals. Annals of Internal Medicine, 2011, 154, 72.	3.9	4
28	Growth-associated protein-43 and ephrin B3 induction in the brain of adult SIV-infected rhesus macaques. Journal of NeuroVirology, 2011, 17, 455-468.	2.1	2
29	The synthesis and biological evaluation of 2-(3-methyl or) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 347 Td (2011, 21, 48-51.	3-phenylis 2.2	oxazol-5-yl)-3 5
30	Office of National Drug Control Policy. Annals of the New York Academy of Sciences, 2010, 1187, 370-402.	3.8	119
31	A Positron Emission Tomography Study Examining The Dopaminergic Activity of Armodafinil in Adults Using [11C]Altropane and [11C]Raclopride. Biological Psychiatry, 2010, 68, 964-970.	1.3	21
32	Screening, brief interventions, referral to treatment (SBIRT) for illicit drug and alcohol use at multiple healthcare sites: Comparison at intake and 6 months later. Drug and Alcohol Dependence, 2009, 99, 280-295.	3.2	579
33	MDMA-induced impairment in primates: antagonism by a selective norepinephrine or serotonin, but not by a dopamine/norepinephrine transport inhibitor. Journal of Psychopharmacology, 2008, 22, 187-202.	4.0	24
34	Rhesus Monkey Trace Amine-Associated Receptor 1 Signaling: Enhancement by Monoamine Transporters and Attenuation by the D2 Autoreceptor in Vitro. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 116-127.	2.5	103
35	Further Evidence of Dopamine Transporter Dysregulation in ADHD: A Controlled PET Imaging Study Using Altropane. Biological Psychiatry, 2007, 62, 1059-1061.	1.3	139
36	Synthesis of 8-thiabicyclo[3.2.1]octanes and their binding affinity for the dopamine and serotonin transporters. Bioorganic and Medicinal Chemistry, 2007, 15, 1067-1082.	3.0	7

#	Article	IF	CITATIONS
37	1-(4-Methylphenyl)-2-pyrrolidin-1-yl-pentan-1-one (Pyrovalerone) Analogues:  A Promising Class of Monoamine Uptake Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 1420-1432.	6.4	349
38	Synthesis of 3-(4-heteroaryl-phenyl)-8-oxabicyclo[3.2.1]octane-2-carboxylic acid methyl esters. Tetrahedron Letters, 2006, 47, 599-603.	1.4	10
39	MDMA (Ecstasy) and human dopamine, norepinephrine, and serotonin transporters: implications for MDMA-induced neurotoxicity and treatment. Psychopharmacology, 2006, 189, 489-503.	3.1	145
40	Ephrin/Eph receptor expression in brain of adult nonhuman primates: Implications for neuroadaptation. Brain Research, 2006, 1067, 67-77.	2.2	28
41	PET Study Examining Pharmacokinetics, Detection and Likeability, and Dopamine Transporter Receptor Occupancy of Short- and Long-Acting Oral Methylphenidate. American Journal of Psychiatry, 2006, 163, 387-395.	7.2	188
42	Cerebellar Vermis Involvement in Cocaine-Related Behaviors. Neuropsychopharmacology, 2006, 31, 1318-1326.	5.4	90
43	Dopamine Transporter (DAT) Inhibitors Alleviate Specific Parkinsonian Deficits in Monkeys: Association with DAT Occupancy in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 570-585.	2.5	24
44	Modafinil Occupies Dopamine and Norepinephrine Transporters in Vivo and Modulates the Transporters and Trace Amine Activity in Vitro. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 561-569.	2.5	304
45	Receptor Regulation of Gene Expression of Axon Guidance Molecules: Implications for Adaptation. Molecular Pharmacology, 2006, 70, 71-77.	2.3	39
46	Dopamine and norepinephrine transporter-dependent c-Fos production in vitro: relevance to neuroadaptation. Journal of Neuroscience Methods, 2005, 143, 69-78.	2.5	5
47	Primate Trace Amine Receptor 1 Modulation by the Dopamine Transporter. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 983-994.	2.5	106
48	Variants of the primate vesicular monoamine transporter-2. Molecular Brain Research, 2005, 139, 251-257.	2.3	7
49	The Dopamine Transporter and Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2005, 57, 1397-1409.	1.3	329
50	The Neurobiology of Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2005, 57, 1374-1376.	1.3	7
51	In Vivo Neuroreceptor Imaging in Attention-Deficit/Hyperactivity Disorder: A Focus on The Dopamine Transporter. Biological Psychiatry, 2005, 57, 1293-1300.	1.3	166
52	Repetitive Behaviors in Monkeys Are Linked to Specific Striatal Activation Patterns. Journal of Neuroscience, 2004, 24, 7557-7565.	3.6	128
53	Synthesis of 8-thiabicyclo[3.2.1]oct-2-enes and their binding affinity for the dopamine and serotonin transporters. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 6007-6010.	2.2	9
54	Synthesis and biological activity of 2-Carbomethoxy-3-catechol-8-azabicyclo[3.2.1]octanes. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 4133-4137.	2.2	6

#	Article	IF	CITATIONS
55	Non-amine-based dopamine transporter (reuptake) inhibitors retain properties of amine-based progenitors. European Journal of Pharmacology, 2003, 479, 41-51.	3.5	13
56	A Second-Generation99mTechnetium Single Photon Emission Computed Tomography Agent That Provides in Vivo Images of the Dopamine Transporter in Primate Brain. Journal of Medicinal Chemistry, 2003, 46, 3483-3496.	6.4	11
57	Synthesis and Evaluation of Dopamine and Serotonin Transporter Inhibition by Oxacyclic and Carbacyclic Analogues of Methylphenidate. Journal of Medicinal Chemistry, 2003, 46, 1538-1545.	6.4	35
58	Melatonin promotes sleep in three species of diurnal nonhuman primates. Physiology and Behavior, 2002, 75, 523-529.	2.1	123
59	Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis. Behavioural Brain Research, 2002, 130, 79-83.	2.2	140
60	The dopamine transporter: relevance to attention deficit hyperactivity disorder (ADHD). Behavioural Brain Research, 2002, 130, 57-63.	2.2	99
61	Design and synthesis of an irreversible dopamine-sparing cocaine antagonist. Bioorganic and Medicinal Chemistry, 2002, 10, 3583-3591.	3.0	22
62	Dopamine transporter-dependent induction of C-Fos in HEK cells. Synapse, 2002, 45, 52-65.	1.2	28
63	Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity. Molecular Brain Research, 2001, 87, 124-143.	2.3	74
64	Synthesis of 6- and 7- Hydroxy-8-azabicyclo[3.2.1]octanes and Their Binding Affinity for the Dopamine and Serotonin Transportersâ€. Journal of Medicinal Chemistry, 2001, 44, 2619-2635.	6.4	37
65	Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology, 2001, 156, 79-85.	3.1	82
66	Nonâ€∎mines, drugs without an amine nitrogen, potently block serotonin transport: Novel antidepressant candidates?. Synapse, 2001, 42, 129-140.	1.2	14
67	Synthesis and preliminary characterization of a high-affinity novel radioligand for the dopamine transporter. Synapse, 2001, 39, 175-181.	1.2	7
68	[11C,127I] Altropane: A highly selective ligand for PET imaging of dopamine transporter sites. Synapse, 2001, 39, 332-342.	1.2	57
69	[3H]PNU-101958, a D4 dopamine receptor probe, accumulates in prefrontal cortex and hippocampus of non-human primate brain. Synapse, 2000, 37, 232-244.	1.2	43
70	3-Aryl-2-carbomethoxybicyclo[3.2.1]oct-2-enes inhibit WIN 35,428 binding potently and selectively at the dopamine transporter. Bioorganic and Medicinal Chemistry, 2000, 8, 581-590.	3.0	21
71	Molecular and regional targets of cocaine in primate brain: liberation from prosaic views. Addiction Biology, 2000, 5, 351-359.	2.6	4
72	Dopamine-transporter density in patients with ADHD. Lancet, The, 2000, 355, 1461-1462.	13.7	8

#	Article	IF	CITATIONS
73	2-Carbomethoxy-3-aryl-8-bicyclo[3.2.1]octanes:Â Potent Non-Nitrogen Inhibitors of Monoamine Transporters. Journal of Medicinal Chemistry, 2000, 43, 2982-2991.	6.4	57
74	Bicyclo[3.2.1]octanes: Synthesis and inhibition of binding at the dopamine and serotonin transporters. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 857-862.	2.2	30
75	Concentration of dopamine transporters: To Bmax or not to Bmax?. Synapse, 1999, 32, 136-140.	1.2	11
76	Non-amine dopamine transporter probe [3H]tropoxene distributes to dopamine-rich regions of monkey brain. Synapse, 1999, 34, 20-27.	1.2	12
77	Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet, The, 1999, 354, 2132-2133.	13.7	590
78	Altropane, a SPECT or PET imaging probe for dopamine neurons: II. distribution to dopamine-rich regions of primate brain. , 1998, 29, 105-115.		35
79	Altropane, a SPECT or PET imaging probe for dopamine neurons: III. Human dopamine transporter in postmortem normal and Parkinson's diseased brain. , 1998, 29, 116-127.		50
80	Rapid detection of Parkinson's disease by SPECT with altropane: A selective ligand for dopamine transporters. , 1998, 29, 128-141.		104
81	Altropane, a SPECT or PET imaging probe for dopamine neurons: I. dopamine transporter binding in primate brain. Synapse, 1998, 29, 93-104.	1.2	36
82	A Technetium-99m SPECT Imaging Agent Which Targets the Dopamine Transporter in Primate Brain. Journal of Medicinal Chemistry, 1997, 40, 1835-1844.	6.4	60
83	Imaging of dopamine transporters in humans with technetium-99m TRODAT-1. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 462-462.	2.1	2
84	2-Carbomethoxy-3-aryl-8-oxabicyclo[3.2.1]octanes:Â Potent Non-Nitrogen Inhibitors of Monoamine Transportersâ€. Journal of Medicinal Chemistry, 1997, 40, 2661-2673.	6.4	92
85	2-Carbomethoxy-3-(diarylmethoxy)-1αH,5αH-tropane Analogs: Synthesis and Inhibition of Binding at the Dopamine Transporter and Comparison with Piperazines of the GBR Series. Journal of Medicinal Chemistry, 1996, 39, 371-379.	6.4	44
86	Technepine: A high-affinity99mtechnetium probe to label the dopamine transporter in brain by SPECT imaging. , 1996, 22, 239-246.		64
87	Quantification of dopamine transporter density in monkeys by dynamic PET imaging of multiple injections of 11C-CFT. , 1996, 24, 262-272.		33
88	Nitrogen-based drugs are not essential for blockade of monoamine transporters. , 1996, 24, 340-348.		59
89	Cocaine accumulates in dopamine-rich regions of primate brain after I.V. Administration: Comparison with mazindol distribution. Synapse, 1994, 18, 261-275.	1.2	47
90	11C-WIN 35,428 for detecting dopamine depletion in mild Parkinson's disease. Annals of Neurology, 1994, 35, 376-377.	5.3	12

#	Article	IF	CITATIONS
91	O-526, a piperidine analog of GBR 12909, retains high affinity for the dopamine transporter in monkey caudate-putamen. European Journal of Pharmacology, 1994, 267, 167-173.	2.6	19
92	The Discovery of an Unusually Selective and Novel Cocaine Analog: Difluoropine. Synthesis and Inhibition of Binding at Cocaine Recognition Sites. Journal of Medicinal Chemistry, 1994, 37, 2001-2010.	6.4	88
93	[3H]CFT ([3H]win 35,428) accumulation in dopamine regions of monkey brain: comparison of a mature and an aged monkey. Brain Research, 1993, 611, 322-325.	2.2	20
94	A Primate Model of Huntington'S Disease: Functional Neural Transplantation and Ct-Guided Stereotactic Procedures. Cell Transplantation, 1992, 1, 313-322.	2.5	36
95	Distribution of cocaine recognition sites in monkey brain: II. Ex vivo autoradiography with [3H]CFT and [125I]RTI-55. Synapse, 1992, 12, 99-111.	1.2	55
96	Synthesis and receptor binding of N-substituted tropane derivatives. High-affinity ligands for the cocaine receptor. Journal of Medicinal Chemistry, 1991, 34, 1728-1731.	6.4	50
97	Fluorescent probes for dopamine receptors: synthesis and characterization of fluorescein and 7-nitrobenz-2-oxa-1,3-diazol-4-yl conjugates of D-1 and D-2 receptor ligands. Journal of Medicinal Chemistry, 1991, 34, 3235-3241.	6.4	39
98	Severe depletion of cocaine recognition sites associated with the dopamine transporter in Parkinson's-diseased striatum. Synapse, 1991, 9, 43-49.	1.2	230
99	Distribution of cocaine recognition sites in monkey brain: I. In vitro autoradiography with [3H]CFT. Synapse, 1991, 9, 177-187.	1.2	65
100	Autoradiographic localization of cocaine binding sites by [3H]CFT ([3H]WIN 35,428) in the monkey brain. Synapse, 1990, 6, 189-195.	1.2	93
101	D1and D2Dopamine Receptors in Caudate-Putamen of Nonhuman Primates (Macaca fascicularis). Journal of Neurochemistry, 1988, 51, 934-943.	3.9	67
102	Drug Potencies on Partially Purified Brain D2Dopamine Receptors. Journal of Neurochemistry, 1985, 44, 856-861.	3.9	12
103	Solubilized receptors for [3H]dopamine (D3 binding sites) from canine brain. Biochemical Pharmacology, 1982, 31, 1183-1187.	4.4	11
104	Solubilized dopamine/neuroleptic receptors (D2-type). Progress in Neuro-Psychopharmacology & Biological Psychiatry, 1981, 5, 543-548.	0.6	7
105	Effects of Skim Milk, Whole Milk and Light Cream on Serum Tryptophan Binding and Brain Tryptophan Concentrations in Rats. Journal of Nutrition, 1975, 105, 1359-1362.	2.9	17
106	Relevance of free tryptophan in serum to tissue tryptophan concentrations. Metabolism: Clinical and Experimental, 1974, 23, 1107-1116.	3.4	155
107	Serum tryptophan level after carbohydrate ingestion: Selective decline in non-albumin-bound tryptophan coincident with reduction in serum free fatty acids. Life Sciences, 1973, 12, 57-64.	4.3	99
108	Formation of respiratory 14CO2 from variously labeled forms of tryptophan-14C in intact and adrenalectomized rats. Archives of Biochemistry and Biophysics, 1968, 125, 829-836.	3.0	41

#	Article	IF	CITATIONS
109	Effects of drugs on the metabolism of tryptophan Biochemical Pharmacology, 1968, 17, 1037-1047.	4.4	17
110	Metabolism of α-methyltryptophan. Biochemical Pharmacology, 1965, 14, 1499-1506.	4.4	34