
Alessandra Boletta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Disruption of polycystin-1 cleavage leads to cardiac metabolic rewiring in mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166371.	3.8	0
2	Role of the polycystins as mechanosensors of extracellular stiffness. American Journal of Physiology - Renal Physiology, 2021, 320, F693-F705.	2.7	14
3	TWEAK Signaling Pathway Blockade Slows Cyst Growth and Disease Progression in Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2021, 32, 1913-1932.	6.1	18
4	Reversing polycystic kidney disease. Nature Genetics, 2021, 53, 1623-1624.	21.4	1
5	P-104: Targeting the mitochondrial protease CLPP in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S95.	0.4	0
6	Metabolic reprogramming and the role of mitochondria in polycystic kidney disease. Cellular Signalling, 2020, 67, 109495.	3.6	61
7	Metabolic reprogramming in polycystic kidney disease explained by super-enhancers and CDK7: new therapeutic targets?. Nature Metabolism, 2020, 2, 659-660.	11.9	1
8	Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma. Cancers, 2020, 12, 3458.	3.7	17
9	Increased mitochondrial fragmentation in polycystic kidney disease acts as a modifier of disease progression. FASEB Journal, 2020, 34, 6493-6507.	0.5	31
10	The N-Terminal Domain of NPHP1 Folds into a Monomeric Left-Handed Antiparallel Three-Stranded Coiled Coil with Anti-apoptotic Function. ACS Chemical Biology, 2019, 14, 1845-1854.	3.4	4
11	In SILICO Simulations Predict a Causative Link Between Increased Glycolysis and Metabolic Reprogramming in Autosomal Dominant Polycystic Kidney Disease. , 2019, , .		1
12	mTORC1-driven accumulation of the oncometabolite fumarate as a potential critical step in renal cancer progression. Molecular and Cellular Oncology, 2019, 6, 1537709.	0.7	3
13	Polycystin-1 Regulates Actomyosin Contraction and the Cellular Response to Extracellular Stiffness. Scientific Reports, 2019, 9, 16640.	3.3	24
14	Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways. Communications Biology, 2018, 1, 194.	4.4	65
15	mTORC1ÂUpregulation Leads to Accumulation of the Oncometabolite Fumarate in a Mouse Model of Renal Cell Carcinoma. Cell Reports, 2018, 24, 1093-1104.e6.	6.4	20
16	Metabolism and mitochondria in polycystic kidney disease research andÂtherapy. Nature Reviews Nephrology, 2018, 14, 678-687.	9.6	122
17	mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development (Cambridge), 2017, 144, 201-210.	2.5	69
18	Defective glycolysis and the use of 2-deoxy-d-glucose in polycystic kidney disease: from animal models to humans. Journal of Nephrology, 2017, 30, 511-519.	2.0	28

Alessandra Boletta

#	Article	IF	CITATIONS
19	Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells. Clinical and Experimental Nephrology, 2017, 21, 203-211.	1.6	16
20	The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function. Molecular Biology of the Cell, 2017, 28, 261-269.	2.1	73
21	mTORC1-mediated inhibition of polycystin-1 expression drives renal cyst formation in tuberous sclerosis complex. Nature Communications, 2016, 7, 10786.	12.8	55
22	2-Deoxy-d-Glucose Ameliorates PKD Progression. Journal of the American Society of Nephrology: JASN, 2016, 27, 1958-1969.	6.1	140
23	Slowing Polycystic Kidney Disease by Fasting. Journal of the American Society of Nephrology: JASN, 2016, 27, 1268-1270.	6.1	5
24	Phosphoinositide 3-Kinase-C2α Regulates Polycystin-2 Ciliary Entry and Protects against Kidney Cyst Formation. Journal of the American Society of Nephrology: JASN, 2016, 27, 1135-1144.	6.1	47
25	Role of the Polycystins in Cell Migration, Polarity, and Tissue Morphogenesis. Cells, 2015, 4, 687-705.	4.1	20
26	Regulation of the microtubular cytoskeleton by Polycystin-1 favors focal adhesions turnover to modulate cell adhesion and migration. BMC Cell Biology, 2015, 16, 15.	3.0	30
27	Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium. Journal of Neuroscience, 2015, 35, 11153-11168.	3.6	47
28	Ciliary membrane proteins traffic through the Golgi via a Rabep1/GGA1/Arl3-dependent mechanism. Nature Communications, 2014, 5, 5482.	12.8	101
29	Polycystin-1 Negatively Regulates Polycystin-2 Expression via the Aggresome/Autophagosome Pathway. Journal of Biological Chemistry, 2014, 289, 6404-6414.	3.4	29
30	Novel Functional Complexity of Polycystin-1 by GPS Cleavage <i>In Vivo</i> : Role in Polycystic Kidney Disease. Molecular and Cellular Biology, 2014, 34, 3341-3353.	2.3	50
31	PI3K Class II α Controls Spatially Restricted Endosomal PtdIns3P and Rab11 Activation to Promote Primary Cilium Function. Developmental Cell, 2014, 28, 647-658.	7.0	177
32	Renal-Retinal Ciliopathy Gene Sdccag8 Regulates DNA Damage Response Signaling. Journal of the American Society of Nephrology: JASN, 2014, 25, 2573-2583.	6.1	63
33	Defective metabolism in polycystic kidney disease: potential for therapy and open questions. Nephrology Dialysis Transplantation, 2014, 29, 1480-1486.	0.7	38
34	Impaired glomerulogenesis and endothelial cell migration in Pkd1-deficient renal organ cultures. Biochemical and Biophysical Research Communications, 2014, 444, 473-479.	2.1	8
35	Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nature Medicine, 2013, 19, 488-493.	30.7	403
36	Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis. Nature Communications, 2013, 4, 2658.	12.8	48

Alessandra Boletta

#	Article	IF	CITATIONS
37	Polycystin-1 regulates the stability and ubiquitination of transcription factor Jade-1. Human Molecular Genetics, 2012, 21, 5456-5471.	2.9	17
38	Polycystin-1 Is Required for Stereocilia Structure But Not for Mechanotransduction in Inner Ear Hair Cells. Journal of Neuroscience, 2011, 31, 12241-12250.	3.6	40
39	Prospects for mTOR Inhibitor Use in Patients with Polycystic Kidney Disease and Hamartomatous Diseases. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 1312-1329.	4.5	85
40	Identification of a Polycystin-1 Cleavage Product, P100, That Regulates Store Operated Ca2+ Entry through Interactions with STIM1. PLoS ONE, 2010, 5, e12305.	2.5	64
41	Nephrocystin-1 Forms a Complex with Polycystin-1 via a Polyproline Motif/SH3 Domain Interaction and Regulates the Apoptotic Response in Mammals. PLoS ONE, 2010, 5, e12719.	2.5	25
42	A Novel Mouse Model Reveals that Polycystin-1 Deficiency in Ependyma and Choroid Plexus Results in Dysfunctional Cilia and Hydrocephalus. PLoS ONE, 2009, 4, e7137.	2.5	81
43	Polycystin-1 Regulates Extracellular Signal-Regulated Kinase-Dependent Phosphorylation of Tuberin To Control Cell Size through mTOR and Its Downstream Effectors S6K and 4EBP1. Molecular and Cellular Biology, 2009, 29, 2359-2371.	2.3	175
44	Emerging evidence of a link between the polycystins and the mTOR pathways. PathoGenetics, 2009, 2, 6.	5.7	72
45	Polycystin-1 Induces Cell Migration by Regulating Phosphatidylinositol 3-kinase-dependent Cytoskeletal Rearrangements and GSK3β-dependent Cell–Cell Mechanical Adhesion. Molecular Biology of the Cell, 2007, 18, 4050-4061.	2.1	96
46	A Regulatory Role of Polycystin-1 on Cystic Fibrosis Transmembrane Conductance Regulator Plasma Membrane Expression. Cellular Physiology and Biochemistry, 2006, 18, 9-20.	1.6	26
47	Polycystin-1 Induces Resistance to Apoptosis through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway. Journal of the American Society of Nephrology: JASN, 2006, 17, 637-647.	6.1	75
48	Role of polycystins in renal tubulogenesis. Trends in Cell Biology, 2003, 13, 484-492.	7.9	99
49	Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16981-16986.	7.1	281
50	PKD1 Induces p21waf1 and Regulation of the Cell Cycle via Direct Activation of the JAK-STAT Signaling Pathway in a Process Requiring PKD2. Cell, 2002, 109, 157-168.	28.9	392
51	Biochemical characterization of bona fide polycystin-1 in vitro and in vivo. American Journal of Kidney Diseases, 2001, 38, 1421-1429.	1.9	46
52	Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature, 2000, 408, 990-994.	27.8	759
53	Polycystin-1, the Gene Product of PKD1 , Induces Resistance to Apoptosis and Spontaneous Tubulogenesis in MDCK Cells. Molecular Cell, 2000, 6, 1267-1273.	9.7	206
54	Nonviral Gene Delivery to the Rat Kidney with Polyethylenimine. Human Gene Therapy, 1997, 8, 1243-1251.	2.7	188