Stefan Endres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	5'-Triphosphate RNA Is the Ligand for RIG-I. Science, 2006, 314, 994-997.	12.6	2,094
2	Quantitative Expression of Toll-Like Receptor 1–10 mRNA in Cellular Subsets of Human Peripheral Blood Mononuclear Cells and Sensitivity to CpG Oligodeoxynucleotides. Journal of Immunology, 2002, 168, 4531-4537.	0.8	1,780
3	Identification of CpG oligonucleotide sequences with high induction of IFN- $\hat{I} \pm / \hat{I}^2$ in plasmacytoid dendritic cells. European Journal of Immunology, 2001, 31, 2154-2163.	2.9	790
4	Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. European Journal of Immunology, 2001, 31, 3026-3037.	2.9	704
5	Advances in cancer immunotherapy 2019 – latest trends. Journal of Experimental and Clinical Cancer Research, 2019, 38, 268.	8.6	401
6	5′-triphosphate-siRNA: turning gene silencing and Rig-I activation against melanoma. Nature Medicine, 2008, 14, 1256-1263.	30.7	353
7	5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIC-I. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12067-12072.	7.1	348
8	Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon–independent apoptosis in human melanoma cells. Journal of Clinical Investigation, 2009, 119, 2399-411.	8.2	322
9	Interleukins in cancer: from biology to therapy. Nature Reviews Cancer, 2021, 21, 481-499.	28.4	318
10	Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. International Journal of Molecular Sciences, 2019, 20, 1283.	4.1	296
11	Teaching an old dog new tricks: next-generation CAR T cells. British Journal of Cancer, 2019, 120, 26-37.	6.4	240
12	CpG Blocks Immunosuppression by Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Clinical Cancer Research, 2011, 17, 1765-1775.	7.0	218
13	Peritumoral CpG DNA Elicits a Coordinated Response of CD8 T Cells and Innate Effectors to Cure Established Tumors in a Murine Colon Carcinoma Model. Journal of Immunology, 2002, 169, 3892-3899.	0.8	178
14	CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. Journal of Experimental Medicine, 2019, 216, 1170-1181.	8.5	145
15	Therapeutic Efficacy of Bifunctional siRNA Combining TCF-β1 Silencing with RIG-I Activation in Pancreatic Cancer. Cancer Research, 2013, 73, 1709-1720.	0.9	130
16	Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy. Cells, 2019, 8, 472.	4.1	122
17	Cancer cells induce interleukin-22 production from memory CD4 ⁺ T cells via interleukin-1 to promote tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12994-12999.	7.1	115
18	Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotherapy, 2019, 11, 201-213.	2.0	108

STEFAN ENDRES

#	Article	IF	CITATIONS
19	Combined dendritic cell- and CpG oligonucleotide-based immune therapy cures large murine tumors that resist chemotherapy. European Journal of Immunology, 2002, 32, 3235-3245.	2.9	107
20	Impact of a New Fusion Receptor on PD-1–Mediated Immunosuppression in Adoptive T Cell Therapy. Journal of the National Cancer Institute, 2015, 107, .	6.3	96
21	Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 2016, 8, 938-948.	5.6	93
22	T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nature Biomedical Engineering, 2021, 5, 1246-1260.	22.5	80
23	Systemic Cancer Therapy with a Small Molecule Agonist of Toll-like Receptor 7 Can Be Improved by Circumventing TLR Tolerance. Cancer Research, 2011, 71, 5123-5133.	0.9	73
24	An ISCOM vaccine combined with a TLR9 agonist breaks immune evasion mediated by regulatory T cells in an orthotopic model of pancreatic carcinoma. International Journal of Cancer, 2011, 128, 897-907.	5.1	72
25	Cancer cell-derived IL-11 \pm induces CCL22 and the recruitment of regulatory T cells. OncoImmunology, 2016, 5, e1175794.	4.6	70
26	Distinct CpG oligonucleotide sequences activate human γ δT cells via interferon-α/-β. European Journal of Immunology, 2001, 31, 3525-3534.	2.9	68
27	Selfâ€priming determines high type I <scp>IFN</scp> production by plasmacytoid dendritic cells. European Journal of Immunology, 2014, 44, 807-818.	2.9	63
28	Interleukin-22 Is Frequently Expressed in Small- and Large-Cell Lung Cancer and Promotes Growth in Chemotherapy-Resistant Cancer Cells. Journal of Thoracic Oncology, 2013, 8, 1032-1042.	1.1	62
29	Suppression of Intratumoral CCL22 by Type I Interferon Inhibits Migration of Regulatory T Cells and Blocks Cancer Progression. Cancer Research, 2015, 75, 4483-4493.	0.9	59
30	Determinants of response and resistance to CAR T cell therapy. Seminars in Cancer Biology, 2020, 65, 80-90.	9.6	59
31	C-C chemokine receptor type-4 transduction of T cells enhances interaction with dendritic cells, tumor infiltration and therapeutic efficacy of adoptive T cell transfer. Oncolmmunology, 2016, 5, e1105428.	4.6	58
32	Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Science Advances, 2021, 7, .	10.3	56
33	Immunostimulatory RNA Blocks Suppression by Regulatory T Cells. Journal of Immunology, 2010, 184, 939-946.	0.8	55
34	Immunostimulatory RNA oligonucleotides trigger an antigen-specific cytotoxic T-cell and IgG2a response. Blood, 2007, 109, 2953-2960.	1.4	54
35	CCL1 is a major regulatory T cell attracting factor in human breast cancer. BMC Cancer, 2018, 18, 1278.	2.6	52
36	Utilizing chemokines in cancer immunotherapy. Trends in Cancer, 2022, 8, 670-682.	7.4	50

STEFAN ENDRES

#	Article	IF	CITATIONS
37	Protease-activation using anti-idiotypic masks enables tumor specificity of a folate receptor 1-T cell bispecific antibody. Nature Communications, 2020, 11, 3196.	12.8	43
38	Targeting interleukin-22 for cancer therapy. Human Vaccines and Immunotherapeutics, 2018, 14, 2012-2015.	3.3	37
39	High-affinity CD16-polymorphism and Fc-engineered antibodies enable activity of CD16-chimeric antigen receptor-modified T cells for cancer therapy. British Journal of Cancer, 2019, 120, 79-87.	6.4	36
40	Blocking inflammation on the way: Rationale for CXCR2 antagonists for the treatment of COVID-19. Journal of Experimental Medicine, 2020, 217, .	8.5	35
41	Activation of Melanoma Differentiation-Associated Gene 5 Causes Rapid Involution of the Thymus. Journal of Immunology, 2009, 182, 6044-6050.	0.8	34
42	Selective Bispecific T Cell Recruiting Antibody and Antitumor Activity of Adoptive T Cell Transfer. Journal of the National Cancer Institute, 2015, 107, 364.	6.3	34
43	Therapeutic Strategies for Targeting IL-1 in Cancer. Cancers, 2021, 13, 477.	3.7	34
44	RIG-I-based immunotherapy enhances survival in preclinical AML models and sensitizes AML cells to checkpoint blockade. Leukemia, 2020, 34, 1017-1026.	7.2	33
45	Analysis of FoxP3+ T-Regulatory Cells and CD8+T-Cells in Ovarian Carcinoma: Location and Tumor Infiltration Patterns Are Key Prognostic Markers. PLoS ONE, 2014, 9, e111757.	2.5	32
46	Immunotherapy in Tumors. Deutsches Ärzteblatt International, 2015, 112, 809-15.	0.9	31
47	Bispecific Antibodies Enable Synthetic Agonistic Receptor-Transduced T Cells for Tumor Immunotherapy. Clinical Cancer Research, 2019, 25, 5890-5900.	7.0	31
48	Shock waves: a novel method for cytoplasmic delivery of antisense oligonucleotides. Journal of Molecular Medicine, 2001, 79, 306-313.	3.9	30
49	Microphthalmia-Associated Transcription Factor (MITF) Regulates Immune Cell Migration into Melanoma. Translational Oncology, 2019, 12, 350-360.	3.7	27
50	Delivery of Immunostimulatory RNA Oligonucleotides by Gelatin Nanoparticles Triggers an Efficient Antitumoral Response. Journal of Immunotherapy, 2010, 33, 935-944.	2.4	26
51	PD1-CD28 Fusion Protein Enables CD4+ T Cell Help for Adoptive T Cell Therapy in Models of Pancreatic Cancer and Non-hodgkin Lymphoma. Frontiers in Immunology, 2018, 9, 1955.	4.8	24
52	A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia, 2021, 35, 2243-2257.	7.2	24
53	Efficient Eradication of Subcutaneous but Not of Autochthonous Gastric Tumors by Adoptive T Cell Transfer in an SV40 T Antigen Mouse Model. Journal of Immunology, 2010, 185, 2580-2588. 	0.8	23
54	A novel TLR7 agonist reverses NK cell anergy and cures RMA-S lymphoma-bearing mice. Oncolmmunology, 2016, 5, e1189051.	4.6	22

Stefan Endres

#	Article	IF	CITATIONS
55	Immunostimulatory RNA leads to functional reprogramming of myeloid-derived suppressor cells in pancreatic cancer. , 2019, 7, 288.		22
56	Nlrp3-dependent IL-1 \hat{I}^2 inhibits CD103+ dendritic cell differentiation in the gut. JCI Insight, 2018, 3, .	5.0	22
57	A Novel Complete Autosomal-Recessive STAT1 LOF Variant Causes Immunodeficiency with Hemophagocytic Lymphohistiocytosis–Like Hyperinflammation. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3102-3111.	3.8	20
58	In breast cancer, a high ratio of tumourâ€infiltrating intraepithelial CD8+ to FoxP3+ cells is characteristic for the medullary subtype. Histopathology, 2011, 59, 965-974.	2.9	19
59	Can we use interleukin-1β blockade for lung cancer treatment?. Translational Lung Cancer Research, 2018, 7, S160-S164.	2.8	19
60	OAS1/RNase L executes RIG-I ligand–dependent tumor cell apoptosis. Science Immunology, 2021, 6, .	11.9	19
61	Peritumoural CCL1 and CCL22 expressing cells in hepatocellular carcinomas shape the tumour immune infiltrate. Pathology, 2019, 51, 586-592.	0.6	17
62	CAR TÂcell therapy in solid tumors: aÂshort review. Memo - Magazine of European Medical Oncology, 2021, 14, 143-149.	0.5	17
63	Defective Interfering Genomes and the Full-Length Viral Genome Trigger RIG-I After Infection With Vesicular Stomatitis Virus in a Replication Dependent Manner. Frontiers in Immunology, 2021, 12, 595390.	4.8	16
64	Short-term activation induces multifunctional dendritic cells that generate potent antitumor T-cell responses in vivo. Cancer Immunology, Immunotherapy, 2009, 58, 901-913.	4.2	15
65	Dying cells expose a nuclear antigen cross-reacting with anti-PD-1 monoclonal antibodies. Scientific Reports, 2018, 8, 8810.	3.3	13
66	Utility of the RIC-I Agonist Triphosphate RNA for Melanoma Therapy. Molecular Cancer Therapeutics, 2019, 18, 2343-2356.	4.1	12
67	Constitutive Expression of CCL22 Is Mediated by T Cell–Derived GM-CSF. Journal of Immunology, 2020, 205, 2056-2065.	0.8	12
68	Systemic but not MDSC-specific IRF4 deficiency promotes an immunosuppressed tumor microenvironment in a murine pancreatic cancer model. Cancer Immunology, Immunotherapy, 2020, 69, 2101-2112.	4.2	12
69	Superior Protective Immunity against Murine Listeriosis by Combined Vaccination with CpG DNA and Recombinant <i>Salmonella enterica</i> Serovar Typhimurium. Infection and Immunity, 2009, 77, 5501-5508.	2.2	11
70	Challenges in Clinical Trial Design for T Cellâ€Based Cancer Immunotherapy. Clinical Pharmacology and Therapeutics, 2020, 107, 47-49.	4.7	9
71	Enhanced Chimeric Antigen Receptor T Cell Therapy through Co-Application of Synergistic Combination Partners. Biomedicines, 2022, 10, 307.	3.2	9
72	Enabling T Cell Recruitment to Tumours as a Strategy for Improving Adoptive T Cell Therapy. European Oncology and Haematology, 2017, 13, 66.	0.0	8

STEFAN ENDRES

#	Article	IF	CITATIONS
73	Prodrug-Activating Chain Exchange (PACE) converts targeted prodrug derivatives to functional bi- or multispecific antibodies. Biological Chemistry, 2022, 403, 495-508.	2.5	6
74	FluoRNT: A robust, efficient assay for the detection of neutralising antibodies against yellow fever virus 17D. PLoS ONE, 2022, 17, e0262149.	2.5	6
75	FOXP3+ Cells Recruited by CCL22 into Breast Cancer Correlates with Less Tumor Nodal Infiltration. Anticancer Research, 2016, 36, 3139-45.	1.1	6
76	Chimeric Antigen Receptor–Modified T Cells and T Cell–Engaging Bispecific Antibodies: Different Tools for the Same Job. Current Hematologic Malignancy Reports, 2021, 16, 218-233.	2.3	4
77	Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor. PLoS ONE, 2015, 10, e0142523.	2.5	3
78	Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. , 2001, 31, 3026.		3
79	Identification of CpG oligonucleotide sequences with high induction of IFN- $\hat{1}\pm/\hat{1}^2$ in plasmacytoid dendritic cells. , 2001, 31, 2154.		3
80	Flow cytometry detection and quantification of CAR T cells into solid tumors. Methods in Cell Biology, 2022, 167, 99-122.	1.1	2
81	Abstract 5024: Treatment with synthetic RIG-I agonist triphosphate RNA leads to local and systemic anti-tumor effects in a mouse melanoma tumor model. , 2019, , .		0