Glen N Barber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455, 674-678.	27.8	2,526
2	STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature, 2009, 461, 788-792.	27.8	2,084
3	STING-Dependent Cytosolic DNA Sensing Mediates Innate Immune Recognition of Immunogenic Tumors. Immunity, 2014, 41, 830-842.	14.3	1,325
4	STING: infection, inflammation and cancer. Nature Reviews Immunology, 2015, 15, 760-770.	22.7	950
5	Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 2017, 550, 402-406.	27.8	851
6	Inhibition of the Interferon- Inducible Protein Kinase PKR by HCV E2 Protein. Science, 1999, 285, 107-110.	12.6	689
7	Cyclic Dinucleotides Trigger ULK1 (ATG1) Phosphorylation of STING to Prevent Sustained Innate Immune Signaling. Cell, 2013, 155, 688-698.	28.9	562
8	Cytosolic-DNA-Mediated, STING-Dependent Proinflammatory Gene Induction Necessitates Canonical NF-κB Activation through TBK1. Journal of Virology, 2014, 88, 5328-5341.	3.4	523
9	Essential Role for the dsRNA-Dependent Protein Kinase PKR in Innate Immunity to Viral Infection. Immunity, 2000, 13, 129-141.	14.3	456
10	Activation of STING requires palmitoylation at the Golgi. Nature Communications, 2016, 7, 11932.	12.8	436
11	Autoimmunity Initiates in Nonhematopoietic Cells and Progresses via Lymphocytes in an Interferon-Dependent Autoimmune Disease. Immunity, 2012, 36, 120-131.	14.3	428
12	STING manifests self DNA-dependent inflammatory disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19386-19391.	7.1	419
13	Deregulation of STING Signaling in Colorectal Carcinoma Constrains DNA Damage Responses and Correlates With Tumorigenesis. Cell Reports, 2016, 14, 282-297.	6.4	414
14	DENV Inhibits Type I IFN Production in Infected Cells by Cleaving Human STING. PLoS Pathogens, 2012, 8, e1002934.	4.7	411
15	Loss of DExD/H Box RNA Helicase LGP2 Manifests Disparate Antiviral Responses. Journal of Immunology, 2007, 178, 6444-6455.	0.8	341
16	Inflammation-driven carcinogenesis is mediated through STING. Nature Communications, 2014, 5, 5166.	12.8	334
17	The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB Journal, 2003, 17, 961-983.	0.5	326
18	Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO Journal. 1998. 17. 6888-6902.	7.8	325

#	Article	IF	CITATIONS
19	Activation of STAT6 by STING Is Critical for Antiviral Innate Immunity. Cell, 2011, 147, 436-446.	28.9	316
20	DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2969-2974.	7.1	298
21	STING-dependent cytosolic DNA sensing pathways. Trends in Immunology, 2014, 35, 88-93.	6.8	285
22	A FADD-dependent innate immune mechanism in mammalian cells. Nature, 2004, 432, 401-405.	27.8	273
23	Alpha/Beta Interferons Potentiate Virus-Induced Apoptosis through Activation of the FADD/Caspase-8 Death Signaling Pathway. Journal of Virology, 2000, 74, 1513-1523.	3.4	269
24	Recurrent Loss of STING Signaling in Melanoma Correlates with Susceptibility to Viral Oncolysis. Cancer Research, 2016, 76, 6747-6759.	0.9	262
25	Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4306-15.	7.1	250
26	Oncolytic Immunovirotherapy for Melanoma Using Vesicular Stomatitis Virus. Cancer Research, 2007, 67, 2840-2848.	0.9	241
27	Innate Immune Recognition of an AT-Rich Stem-Loop DNA Motif in the Plasmodium falciparum Genome. Immunity, 2011, 35, 194-207.	14.3	234
28	STING Recognition of Cytoplasmic DNA Instigates Cellular Defense. Molecular Cell, 2013, 50, 5-15.	9.7	234
29	Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Current Opinion in Immunology, 2011, 23, 10-20.	5.5	222
30	Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nature Communications, 2018, 9, 1249.	12.8	215
31	Cytoplasmic DNA innate immune pathways. Immunological Reviews, 2011, 243, 99-108.	6.0	203
32	VSV Disrupts the Rae1/mrnp41 mRNA Nuclear Export Pathway. Molecular Cell, 2005, 17, 93-102.	9.7	202
33	Genetically Engineered Vesicular Stomatitis Virus in Gene Therapy: Application for Treatment of Malignant Disease. Journal of Virology, 2002, 76, 895-904.	3.4	201
34	HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene, 2001, 20, 800-811.	5.9	198
35	Development of Recombinant Vesicular Stomatitis Viruses That Exploit Defects in Host Defense To Augment Specific Oncolytic Activity. Journal of Virology, 2003, 77, 8843-8856.	3.4	188
36	PKR, apoptosis and cancer. International Journal of Biochemistry and Cell Biology, 1999, 31, 123-138.	2.8	183

#	Article	IF	CITATIONS
37	Oncolytic Viruses as Antigen-Agnostic Cancer Vaccines. Cancer Cell, 2018, 33, 599-605.	16.8	178
38	Oncolytic Activity of Vesicular Stomatitis Virus Is Effective against Tumors Exhibiting Aberrant p53, Ras, or Myc Function and Involves the Induction of Apoptosis. Journal of Virology, 2001, 75, 3474-3479.	3.4	170
39	Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell, 2004, 5, 51-65.	16.8	167
40	Suppression of STING signaling through epigenetic silencing and missense mutation impedes DNA damage mediated cytokine production. Oncogene, 2018, 37, 2037-2051.	5.9	158
41	The IRF-3 Transcription Factor Mediates Sendai Virus-Induced Apoptosis. Journal of Virology, 2000, 74, 3781-3792.	3.4	148
42	TAX1BP1 and A20 Inhibit Antiviral Signaling by Targeting TBK1-IKKi Kinases. Journal of Biological Chemistry, 2010, 285, 14999-15009.	3.4	143
43	Intrinsic Self-DNA Triggers Inflammatory Disease Dependent on STING. Journal of Immunology, 2014, 193, 4634-4642.	0.8	140
44	Vesicular Stomatitis Virus (VSV) Therapy of Tumors. IUBMB Life, 2000, 50, 135-138.	3.4	135
45	Extrinsic Phagocyte-Dependent STING Signaling Dictates the Immunogenicity of Dying Cells. Cancer Cell, 2018, 33, 862-873.e5.	16.8	133
46	VSV-tumor selective replication and protein translation. Oncogene, 2005, 24, 7710-7719.	5.9	129
47	A noncanonical function of cGAMP in inflammasome priming and activation. Journal of Experimental Medicine, 2017, 214, 3611-3626.	8.5	128
48	Vesicular Stomatitis Virus as an Oncolytic Vector. Viral Immunology, 2004, 17, 516-527.	1.3	125
49	STING signaling and host defense against microbial infection. Experimental and Molecular Medicine, 2019, 51, 1-10.	7.7	119
50	Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Current Opinion in Immunology, 2014, 31, 121-126.	5.5	116
51	Ubiquitination of STING at lysine 224 controls IRF3 activation. Science Immunology, 2017, 2, .	11.9	115
52	Characterization of Two Evolutionarily Conserved, Alternatively Spliced Nuclear Phosphoproteins, NFAR-1 and -2, That Function in mRNA Processing and Interact with the Double-stranded RNA-dependent Protein Kinase, PKR. Journal of Biological Chemistry, 2001, 276, 32300-32312.	3.4	112
53	Vesicular Stomatitis Virus (VSV) Therapy of Tumors. IUBMB Life, 2000, 50, 135-138.	3.4	109
54	DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nature Communications, 2015, 6, 5853.	12.8	107

#	Article	IF	CITATIONS
55	STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis. Cell Reports, 2017, 21, 3873-3884.	6.4	101
56	The STING pathway and regulation of innate immune signaling in response to DNA pathogens. Cellular and Molecular Life Sciences, 2011, 68, 1157-1165.	5.4	100
57	Expression of IFN-β Enhances Both Efficacy and Safety of Oncolytic Vesicular Stomatitis Virus for Therapy of Mesothelioma. Cancer Research, 2009, 69, 7713-7720.	0.9	96
58	Attenuation of Vesicular Stomatitis Virus Encephalitis through MicroRNA Targeting. Journal of Virology, 2010, 84, 1550-1562.	3.4	96
59	Ovarian Cancer Cells Commonly Exhibit Defective STING Signaling Which Affects Sensitivity to Viral Oncolysis. Molecular Cancer Research, 2019, 17, 974-986.	3.4	95
60	Activation of the STING Adaptor Attenuates Experimental Autoimmune Encephalitis. Journal of Immunology, 2014, 192, 5571-5578.	0.8	92
61	Pro-inflammation Associated with a Gain-of-Function Mutation (R284S) in the Innate Immune Sensor STING. Cell Reports, 2018, 23, 1112-1123.	6.4	92
62	Phosphorylation of the NFAR proteins by the dsRNA-dependent protein kinase PKR constitutes a novel mechanism of translational regulation and cellular defense. Genes and Development, 2010, 24, 2640-2653.	5.9	85
63	<i>Brucella abortus</i> Triggers a cGAS-Independent STING Pathway To Induce Host Protection That Involves Guanylate-Binding Proteins and Inflammasome Activation. Journal of Immunology, 2018, 200, 607-622.	0.8	84
64	Epigenetic reprogramming of tumor cell–intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	78
65	Interference of CD40L-Mediated Tumor Immunotherapy by Oncolytic Vesicular Stomatitis Virus. Human Gene Therapy, 2010, 21, 439-450.	2.7	74
66	NFAR-1 and -2 modulate translation and are required for efficient host defense. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4173-4178.	7.1	66
67	DDX24 Negatively Regulates Cytosolic RNA-Mediated Innate Immune Signaling. PLoS Pathogens, 2013, 9, e1003721.	4.7	66
68	Induction of a TRAIL mediated suicide program by interferon alpha in primary effusion lymphoma. Oncogene, 2001, 20, 7029-7040.	5.9	62
69	Safety Studies on Intrahepatic or Intratumoral Injection of Oncolytic Vesicular Stomatitis Virus Expressing Interferon-β in Rodents and Nonhuman Primates. Human Gene Therapy, 2010, 21, 451-462.	2.7	62
70	STING, a cytosolic DNA sensor, plays a critical role in atherogenesis: a link between innate immunity and chronic inflammation caused by lifestyle-related diseases. European Heart Journal, 2021, 42, 4336-4348.	2.2	61
71	STING Signaling in Melanoma Cells Shapes Antigenicity and Can Promote Antitumor T-cell Activity. Cancer Immunology Research, 2019, 7, 1837-1848.	3.4	59
72	The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Research, 2003, 63, 8366-76.	0.9	56

#	Article	IF	CITATIONS
73	Primate-specific miR-576-3p sets host defense signalling threshold. Nature Communications, 2014, 5, 4963.	12.8	52
74	Combating herpesvirus encephalitis by potentiating a TLR3–mTORC2 axis. Nature Immunology, 2018, 19, 1071-1082.	14.5	52
75	Fas-Associated Death Domain-Containing Protein-Mediated Antiviral Innate Immune Signaling Involves the Regulation of <i>Irf7</i> . Journal of Immunology, 2007, 178, 2429-2439.	0.8	49
76	Treg Depletion–enhanced IL-2 Treatment Facilitates Therapy of Established Tumors Using Systemically Delivered Oncolytic Virus. Molecular Therapy, 2008, 16, 1217-1226.	8.2	47
77	STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection. PLoS Pathogens, 2021, 17, e1009597.	4.7	45
78	Use of Biological Therapy to Enhance Both Virotherapy and Adoptive T-Cell Therapy for Cancer. Molecular Therapy, 2008, 16, 1910-1918.	8.2	44
79	Cutting Edge: Innate Immune Augmenting Vesicular Stomatitis Virus Expressing Zika Virus Proteins Confers Protective Immunity. Journal of Immunology, 2017, 198, 3023-3028.	0.8	44
80	STINC-dependent signaling. Nature Immunology, 2011, 12, 929-930.	14.5	43
81	The NFAR's (Nuclear Factors Associated with dsRNA): Evolutionarily conserved members of the dsRNA binding protein family. RNA Biology, 2009, 6, 35-39.	3.1	41
82	Bacterial c-di-GMP Affects Hematopoietic Stem/Progenitors and Their Niches through STING. Cell Reports, 2015, 11, 71-84.	6.4	41
83	The interferons and cell death: guardians of the cell or accomplices of apoptosis?. Seminars in Cancer Biology, 2000, 10, 103-111.	9.6	40
84	Reciprocal regulation of STING and TCR signaling by mTORC1 for T-cell activation and function. Life Science Alliance, 2019, 2, e201800282.	2.8	40
85	Vesicular Stomatitis Virus Expressing Tumor Suppressor p53 Is a Highly Attenuated, Potent Oncolytic Agent. Journal of Virology, 2011, 85, 10440-10450.	3.4	39
86	The 90- and 110-kDa Human NFAR Proteins Are Translated from Two Differentially Spliced mRNAs Encoded on Chromosome 19p13. Genomics, 2001, 71, 256-259.	2.9	38
87	<i>Brucella abortus</i> Cyclic Dinucleotides Trigger STING-Dependent Unfolded Protein Response That Favors Bacterial Replication. Journal of Immunology, 2019, 202, 2671-2681.	0.8	37
88	Novel c-di-GMP recognition modes of the mouse innate immune adaptor protein STING. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 352-366.	2.5	36
89	Nucleic acid sensing by T cells initiates Th2 cell differentiation. Nature Communications, 2014, 5, 3566.	12.8	36
90	Evaluating Replication-Defective Vesicular Stomatitis Virus as a Vaccine Vehicle. Journal of Virology, 2006, 80, 6993-7008.	3.4	32

#	Article	IF	CITATIONS
91	The Alpha Subunit of Eukaryotic Initiation Factor 2B (eIF2B) Is Required for eIF2-Mediated Translational Suppression of Vesicular Stomatitis Virus. Journal of Virology, 2011, 85, 9716-9725.	3.4	29
92	The cGAS/STING Pathway Is Important for Dendritic Cell Activation but Is Not Essential to Induce Protective Immunity against <i>Mycobacterium tuberculosis</i> Infection. Journal of Innate Immunity, 2018, 10, 239-252.	3.8	28
93	The STING controlled cytosolic-DNA activated innate immune pathway and microbial disease. Microbes and Infection, 2014, 16, 998-1001.	1.9	26
94	Vesicular stomatitis virus inhibits mitotic progression and triggers cell death. EMBO Reports, 2009, 10, 1154-1160.	4.5	25
95	Liver Immune Cells Release Type 1 Interferon Due to DNA Sensing and Amplify Liver Injury from Acetaminophen Overdose. Cells, 2018, 7, 88.	4.1	24
96	The TAR-RNA binding protein is required for immunoresponses triggered by Cardiovirus infection. Biochemical and Biophysical Research Communications, 2016, 480, 187-193.	2.1	22
97	Vaccine-induced immune responses against both Gag and Env improve control of simian immunodeficiency virus replication in rectally challenged rhesus macaques. PLoS Pathogens, 2017, 13, e1006529.	4.7	19
98	Oncogenic Human T-Cell Lymphotropic Virus Type 1 Tax Suppression of Primary Innate Immune Signaling Pathways. Journal of Virology, 2015, 89, 4880-4893.	3.4	18
99	Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathogens, 2020, 16, e1009020.	4.7	18
100	Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia. Journal of Virology, 2015, 89, 11786-11800.	3.4	17
101	STING differentially regulates experimental GVHD mediated by CD8 versus CD4 T cell subsets. Science Translational Medicine, 2020, 12, .	12.4	15
102	Preclinical safety and activity of recombinant VSVâ€IFNâ€Î² in an immunocompetent model of squamous cell carcinoma of the head and neck. Head and Neck, 2014, 36, 1619-1627.	2.0	14
103	Evaluation of Innate Immune Signaling Pathways in Transformed Cells. Methods in Molecular Biology, 2012, 797, 217-238.	0.9	13
104	Radiation Attenuates Prostate Tumor Antiviral Responses to Vesicular Stomatitis Virus Containing IFNβ, Resulting in Pronounced Antitumor Systemic Immune Responses. Molecular Cancer Research, 2020, 18, 1232-1243.	3.4	13
105	Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING. ELife, 2020, 9, .	6.0	13
106	Innate immunity in an in vitro murine blastocyst model using embryonic and trophoblast stem cells. Journal of Bioscience and Bioengineering, 2014, 117, 358-365.	2.2	11
107	Explicit targeting of transformed cells by VSV in ovarian epithelial tumor-bearing Wv mouse models. Gynecologic Oncology, 2010, 116, 269-275.	1.4	9
108	Cellular Immune Responses against Simian T-Lymphotropic Virus Type 1 Target Tax in Infected Baboons. Journal of Virology, 2016, 90, 5280-5291.	3.4	8

#	Article	IF	CITATIONS
109	Potential of vesicular stomatitis virus as an oncolytic therapy for recurrent and drug-resistant ovarian cancer. Chinese Journal of Cancer, 2011, 30, 805-814.	4.9	7
110	STING Signaling Drives Production of Innate Cytokines, Generation of CD8+ T Cells and Enhanced Protection Against Trypanosoma cruzi Infection. Frontiers in Immunology, 2021, 12, 775346.	4.8	5
111	Simian T Lymphotropic Virus 1 Infection of Papio anubis: <i>tax</i> Sequence Heterogeneity and T Cell Recognition. Journal of Virology, 2017, 91, .	3.4	3
112	Trial in Progress: A Phase II Trial of Belinostat As Consolidation Therapy with Zidovudine for Adult T-Cell Leukemia-Lymphoma (ATLL). Blood, 2021, 138, 2477-2477.	1.4	3
113	The Birds, the Bees, and Innate Immunity. Immunity, 2017, 46, 521-522.	14.3	2
114	Correction for Tesfay et al., Vesiculovirus Neutralization by Natural IgM and Complement. Journal of Virology, 2015, 89, 1945-1946.	3.4	0
115	Editorial: Immuno-Epigenetic Markers for Infectious Diseases. Frontiers in Immunology, 2019, 10, 2719.	4.8	0
116	A High Resolution Comparative Genomic Hybridization Array of Adult T-Cell Leukemia-Lymphoma in Individuals of African Descent Blood, 2009, 114, 4241-4241.	1.4	0
117	Engineering VSV-IFN-NIS for the Treatment of Multiple Myeloma Blood, 2009, 114, 378-378.	1.4	0
118	The Innate Immune Sensor Sting Promotes Donor CD8+ T Cell Activation and Recipient APC Death Early after Preclinical Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2019, 134, 3202-3202.	1.4	0
119	Brucella suppress STING expression via miR-24 to enhance infection. , 2020, 16, e1009020.		0
120	Brucella suppress STING expression via miR-24 to enhance infection. , 2020, 16, e1009020.		0
121	Brucella suppress STING expression via miR-24 to enhance infection. , 2020, 16, e1009020.		0
122	Brucella suppress STING expression via miR-24 to enhance infection. , 2020, 16, e1009020.		0