M R Siddiqui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4647071/publications.pdf

Version: 2024-02-01

		81900	91884
175	5,786	39	69
papers	citations	h-index	g-index
176	176	176	6952
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 2015, 3, 18753-18808.	10.3	563
2	COVID-19: A Global Challenge with Old History, Epidemiology and Progress So Far. Molecules, 2021, 26, 39.	3.8	296
3	Plant-Extract-Assisted Green Synthesis of Silver Nanoparticles Using Origanum vulgare L. Extract and Their Microbicidal Activities. Sustainability, 2018, 10, 913.	3.2	211
4	Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. Catalysis Today, 2002, 72, 133-144.	4.4	190
5	Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Transactions, 2015, 44, 9709-9717.	3.3	174
6	Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A: General, 1998, 166, 143-152.	4.3	165
7	Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction. Dalton Transactions, 2014, 43, 9026-9031.	3.3	157
8	Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. International Journal of Nanomedicine, 2013, 8, 1507.	6.7	151
9	Gold Compounds as Ionic Liquids. Synthesis, Structures, and Thermal Properties of N,Nâ€~-Dialkylimidazolium Tetrachloroaurate Salts. Inorganic Chemistry, 1999, 38, 5637-5641.	4.0	145
10	Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora persica L. Root (Miswak) Extract. Nanoscale Research Letters, 2015, 10, 987.	5.7	138
11	Identification of active phases in Au–Fe catalysts for low-temperature CO oxidation. Physical Chemistry Chemical Physics, 1999, 1, 485-489.	2.8	117
12	Coke formation during CO2 reforming of CH4 over alumina-supported nickel catalysts. Applied Catalysis A: General, 2009, 364, 150-155.	4. 3	115
13	N,Nâ€-Dialkylimidazolium Chloroplatinate(II), Chloroplatinate(IV), and Chloroiridate(IV) Salts and an N-Heterocyclic Carbene Complex of Platinum(II):  Synthesis in Ionic Liquids and Crystal Structures. Inorganic Chemistry, 2001, 40, 795-800.	4.0	104
14	Green Synthesis and Characterization of Palladium Nanoparticles Using Origanum vulgare L. Extract and Their Catalytic Activity. Molecules, 2017, 22, 165.	3.8	101
15	Plant extracts as green reductants for the synthesis of silver nanoparticles: lessons from chemical synthesis. Dalton Transactions, 2018, 47, 11988-12010.	3.3	97
16	Synthesis of the monooxoruthenium(V) complexes containing the aminopolycarboxylic acid ligands EDTA and PDTA and their reactivities in the oxidation of organic substrates. X-ray crystal structures of K[RullI(EDTA-H)Cl].cntdot.0.5H2O. Inorganic Chemistry, 1992, 31, 2711-2718.	4.0	89
17	Ambient temperature CO oxidation using copper manganese oxide catalysts prepared by coprecipitation: effect of ageing on catalyst performance. Catalysis Letters, 1996, 42, 21-24.	2.6	84
18	Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media. Journal of Saudi Chemical Society, 2017, 21, 450-457.	5.2	84

#	Article	IF	Citations
19	Hydration and acetoxylation of monoterpenes catalyzed by heteropoly acid. Journal of Molecular Catalysis A, 2001, 175, 33-42.	4.8	79
20	Pulicaria glutinosa plant extract: a green and eco-friendly reducing agent for the preparation of highly reduced graphene oxide. RSC Advances, 2014, 4, 24119-24125.	3.6	73
21	Enhanced Antimicrobial Activity of Biofunctionalized Zirconia Nanoparticles. ACS Omega, 2020, 5, 1987-1996.	3.5	71
22	High-activity Au/CuO–ZnO catalysts for the oxidation of carbon monoxide at ambient temperature. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 187-188.	1.7	70
23	Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express, 2017, 7, 49.	3.0	68
24	Coking and regeneration of H3PW12O40/SiO2 catalysts. Applied Catalysis A: General, 2001, 214, 47-58.	4.3	62
25	Azadirachta indica based biosynthesis of silver nanoparticles and evaluation of their antibacterial and cytotoxic effects. Journal of King Saud University - Science, 2020, 32, 648-656.	3.5	61
26	Oxygen atom transfer in the oxidation of triphenylphosphine by molecular oxygen catalyzed by a ruthenium(III)-EDTA-triphenylphosphine complex. Inorganic Chemistry, 1986, 25, 2765-2771.	4.0	57
27	Niobium peroxo compounds as catalysts for liquid-phase oxidation with hydrogen peroxide. Journal of Molecular Catalysis A, 2000, 153, 103-108.	4.8	55
28	Antibacterial properties of silver nanoparticles synthesized using Pulicaria glutinosa plant extract as a green bioreductant. International Journal of Nanomedicine, 2014, 9, 3551.	6.7	55
29	Pulicaria glutinosa Extract: A Toolbox to Synthesize Highly Reduced Graphene Oxide-Silver Nanocomposites. International Journal of Molecular Sciences, 2015, 16, 1131-1142.	4.1	53
30	Synthesis of Au, Ag, and Au–Ag Bimetallic Nanoparticles Using Pulicaria undulata Extract and Their Catalytic Activity for the Reduction of 4-Nitrophenol. Nanomaterials, 2020, 10, 1885.	4.1	52
31	Production of biodiesel from waste cooking oil using ZnCuO/N-doped graphene nanocomposite as an efficient heterogeneous catalyst. Arabian Journal of Chemistry, 2021, 14, 102982.	4.9	51
32	Green synthesis of Pd@graphene nanocomposite: Catalyst for the selective oxidation of alcohols. Arabian Journal of Chemistry, 2016, 9, 835-845.	4.9	50
33	Chemical diversity in leaf and stem essential oils of Origanum vulgare L. and their effects on microbicidal activities. AMB Express, 2019, 9, 176.	3.0	48
34	Synthesis and Characterization of Silver Oxide and Silver Chloride Nanoparticles with High Thermal Stability. Asian Journal of Chemistry, 2013, 25, 3405-3409.	0.3	45
35	Efficient Ni–Mo hydrodesulfurization catalyst prepared through Keggin polyoxometalate. Applied Catalysis B: Environmental, 2016, 182, 102-108.	20.2	45
36	<i>Pulicaria undulata</i> Extract-Mediated Eco-Friendly Preparation of TiO ₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue and Methyl Orange. ACS Omega, 2022, 7, 4812-4820.	3.5	43

#	Article	IF	CITATIONS
37	Effects of precursor on the morphology and size of ZrO2 nanoparticles, synthesized by sol-gel method in non-aqueous medium. Materials Research, 2012, 15, 986-989.	1.3	42
38	A highly reduced graphene oxide/ZrO _x â \in MnCO ₃ or â \in Mn ₂ O ₃ nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols. RSC Advances, 2017, 7, 55336-55349.	3.6	42
39	Green Synthesis of Hydrophobic Magnetite Nanoparticles Coated with Plant Extract and Their Application as Petroleum Oil Spill Collectors. Nanomaterials, 2018, 8, 855.	4.1	42
40	Ultrasonic promoted synthesis of novel s -triazine-Schiff base derivatives; molecular structure, spectroscopic studies and their preliminary anti-proliferative activities. Journal of Molecular Structure, 2016, 1125, 121-135.	3.6	41
41	"Miswak―Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis. Molecules, 2016, 21, 1478.	3.8	40
42	Coking and regeneration of palladium-doped H3PW12O40/SiO2 catalysts. Catalysis Letters, 2000, 66, 53-57.	2.6	37
43	Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. Plants, 2022, 11, 109.	3.5	35
44	Heteropoly acid precursor to a catalyst for dibenzothiophene hydrodesulfurization. Applied Catalysis A: General, 2000, 204, 251-256.	4.3	33
45	Characterization of leaves and flowers volatile constituents of Lantana camara growing in central region of Saudi Arabia. Arabian Journal of Chemistry, 2016, 9, 764-774.	4.9	32
46	Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer. International Journal of Nanomedicine, 2016, 11, 873.	6.7	31
47	Ag2O nanoparticles/MnCO3, –MnO2 or –Mn2O3/highly reduced graphene oxide composites as an efficient and recyclable oxidation catalyst. Arabian Journal of Chemistry, 2019, 12, 54-68.	4.9	29
48	Structure, Chemistry and Activity of Well-Defined Cu-ZSM-5 Catalysts in The Selective Reduction of NOX. Studies in Surface Science and Catalysis, 1994, 84, 1483-1492.	1.5	28
49	Green Synthesis of Silver Nanoparticles Using Juniperus procera Extract: Their Characterization, and Biological Activity. Crystals, 2022, 12, 420.	2.2	28
50	Solvothermal Preparation and Electrochemical Characterization of Cubic ZrO2 Nanoparticles/Highly Reduced Graphene (HRG) based Nanocomposites. Materials, 2019, 12, 711.	2.9	26
51	Facile synthesis of Pd@graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction. Scientific Reports, 2020, 10, 11728.	3.3	26
52	One-Pot Synthesized Pd@N-Doped Graphene: An Efficient Catalyst for Suzuki–Miyaura Couplings. Catalysts, 2019, 9, 469.	3.5	25
53	Pollen Bee Aqueous Extract-Based Synthesis of Silver Nanoparticles and Evaluation of Their Anti-Cancer and Anti-Bacterial Activities. Processes, 2020, 8, 524.	2.8	25
54	Determination of chemical constituents of leaf and stem essential oils of Artemisia monosperma from central Saudi Arabia. Natural Product Communications, 2012, 7, 1079-82.	0.5	25

#	Article	IF	CITATIONS
55	Study of Antibacterial Properties of Ziziphus mauritiana based Green Synthesized Silver Nanoparticles against Various Bacterial Strains. Sustainability, 2020, 12, 1484.	3.2	24
56	Mn3O4 nanoparticles: Synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi Journal of Biological Sciences, 2021, 28, 1196-1202.	3.8	24
57	Gold & Cole Cole Cole Cole Cole Cole Cole Cole	4.9	23
58	Synthesis and comparative catalytic study of zinc oxide (ZnO <i>_x</i>) nanoparticles promoted MnCO ₃ , MnO ₂ and Mn ₂ O ₃ for selective oxidation of benzylic alcohols using molecular oxygen. Materials Express, 2017, 7, 79-92.	0.5	23
59	Efficient aerial oxidation of different types of alcohols using ZnO nanoparticle–MnCO ₃ â€graphene oxide composites. Applied Organometallic Chemistry, 2020, 34, e5718.	3.5	23
60	Convenient synthesis of substituted pyrroles via a cerium (IV) ammonium nitrate (CAN)-catalyzed Paal–Knorr reaction. Arabian Journal of Chemistry, 2016, 9, 542-549.	4.9	22
61	Tandem Aldol-Michael reactions in aqueous diethylamine medium: a greener and efficient approach to dimedone-barbituric acid derivatives. Chemistry Central Journal, 2014, 8, 9.	2.6	21
62	Mixed Zinc/Manganese on Highly Reduced Graphene Oxide: A Highly Active Nanocomposite Catalyst for Aerial Oxidation of Benzylic Alcohols. Catalysts, 2017, 7, 391.	3.5	21
63	Gas-phase catalytic asymmetric reaction using chirally modified microporous catalysts. Journal of the Chemical Society Chemical Communications, 1995, , 2409.	2.0	20
64	Microwave Synthesis, Characterization, and Antimicrobial Activity of Some Novel Isatin Derivatives. Journal of Chemistry, 2015, 2015, 1-8.	1.9	20
65	Modified Polyacrylic Acid-Zinc Composites: Synthesis, Characterization and Biological Activity. Molecules, 2016, 21, 292.	3.8	20
66	Plant Extract Mediated Eco-Friendly Synthesis of Pd@Graphene Nanocatalyst: An Efficient and Reusable Catalyst for the Suzuki-Miyaura Coupling. Catalysts, 2017, 7, 20.	3.5	20
67	Ionic liquid behavior and high thermal stability of silver chloride nanoparticles: Synthesis and characterization. Arabian Journal of Chemistry, 2013, 6, 435-438.	4.9	19
68	Eco-Friendly Mechanochemical Preparation of Ag2O–MnO2/Graphene Oxide Nanocomposite: An Efficient and Reusable Catalyst for the Base-Free, Aerial Oxidation of Alcohols. Catalysts, 2020, 10, 281.	3.5	19
69	Effect of Al and Ca addition on the copper catalysed formation of silanes from Si and CH3Cl. Applied Catalysis A: General, 2001, 206, 257-265.	4.3	18
70	Determination of Chemical Constituents of Leaf and Stem Essential Oils of <i>Artemisia monosperma</i> from Central Saudi Arabia. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	18
71	Vanadia supported on nickel manganese oxide nanocatalysts for the catalytic oxidation of aromatic alcohols. Nanoscale Research Letters, 2015, 10, 52.	5.7	18
72	Selective oxidation of benzylic alcohols using copper-manganese mixed oxide nanoparticles as catalyst. Arabian Journal of Chemistry, 2015, 8, 512-517.	4.9	18

#	Article	IF	Citations
73	Sonochemical synthesis of novel pyrano[3,4-e][1,3]oxazines: A green protocol. Ultrasonics Sonochemistry, 2017, 36, 474-480.	8.2	18
74	Cd(II) complex constructed from dipyridyl imine ligand: Design, synthesis and exploration of its photocatalytic degradation properties. Inorganica Chimica Acta, 2018, 471, 698-704.	2.4	18
75	Antibiotic and Antibiofilm Activities of Salvadora persica L. Essential Oils against Streptococcus mutans: A Detailed Comparative Study with Chlorhexidine Digluconate. Pathogens, 2020, 9, 66.	2.8	18
76	Thermodynamics of homogeneous hydrogenation. Journal of Molecular Catalysis, 1988, 45, 35-50.	1.2	17
77	A Novel N-Heterocyclic carbene of Platinum(li): Synthesis in Ionic Liquids and Crystal Structure. Journal of Chemical Research, 2000, 2000, 392-393.	1.3	16
78	Synthesis, characterization, crystal structure and chemical behavior of $[1,1$ -bis(diphenylphosphinomethyl)ethene]ruthenium(II) complex toward primary alkylamine addition. Transition Metal Chemistry, 2009, 34, 347-352.	1.4	16
79	Oxidative CO2 reforming of CH4 over Ni/l±-Al2O3 catalyst. Journal of Industrial and Engineering Chemistry, 2011, 17, 479-483.	5.8	16
80	Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications. Chemical Record, 2022, 22, e202100274.	5.8	16
81	Cationic complexes of ruthenium-(II) and -(III) with uni- and poly-dentate ligands. Journal of the Chemical Society Dalton Transactions, 1985, , 2603.	1.1	15
82	First catalytic sulfur atom transfer reaction by a novel (.mupersulfido)ruthenium(IV) complex, [(Edta-H)RuIV]2S22 Inorganic Chemistry, 1991, 30, 1157-1159.	4.0	15
83	Formation of a rhodium(II) monohydrido complex derived from wilkinson's complex RhCl(PPh3)3 in the interlamellar spaces of montmorillonite and catalytic hydrogenation of cyclohexene. Polyhedron, 1991, 10, 2729-2736.	2.2	15
84	Probing the conformational properties of guest molecules in solid inclusion compounds via EXAFS spectroscopy: bromine K-edge EXAFS studies of the bromocyclohexane/thiourea and trans-1-bromo-2-chlorocyclohexane/thiourea inclusion compounds. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1497.	1.7	15
85	Compositional characteristics of the essential oil of <i>Myrtus communis </i> part of Saudi Arabia. Journal of Essential Oil Research, 2014, 26, 13-18.	2.7	15
86	Efficient hydrodesulfurization catalysts based on Keggin polyoxometalates. Applied Catalysis A: General, 2015, 508, 16-24.	4.3	15
87	Comparative catalytic evaluation of nickel and cobalt substituted phosphomolybdic acid catalyst supported on silica for hydrodesulfurization of thiophene. Journal of Saudi Chemical Society, 2017, 21, 965-973.	5.2	15
88	Probing the Catalytic Efficiency of Supported Heteropoly Acids for Esterification: Effect of Weak Catalyst Support Interactions. Journal of Chemistry, 2018, 2018, 1-10.	1.9	15
89	Copper-Promoted One-Pot Approach: Synthesis of Benzimidazoles. Molecules, 2020, 25, 1788.	3.8	15
90	Evaluation of the Anticancer Activity of Phytomolecules Conjugated Gold Nanoparticles Synthesized by Aqueous Extracts of Zingiber officinale (Ginger) and Nigella sativa L. Seeds (Black Cumin). Materials, 2021, 14, 3368.	2.9	15

#	Article	IF	Citations
91	Stereoselective synthesis of diazaspiro[5.5]undecane derivatives via base promoted [5+1] double Michael addition of N,N-dimethylbarbituric acid to diaryliedene acetones. Arabian Journal of Chemistry, 2017, 10, 1-9.	4.9	14
92	Evaluation of Matricaria aurea Extracts as Effective Anti-Corrosive Agent for Mild Steel in 1.0 M HCl and Isolation of Their Active Ingredients. Sustainability, 2019, 11, 7174.	3.2	14
93	Nitrosyl ethylenediaminetetraacetato ruthemium(III) â€" an efficient oxygen atom transfer agent for the oxidation of olefins by molecular O2 and PhIO through ligand-mediated nitrosyl/nitro couple. Journal of Molecular Catalysis, 1992, 72, 271-282.	1.2	13
94	Oxidation of tertiary phosphines by molecular oxygen catalysed by RullI-EDTA complex. Electronic effect of phosphine substituent on the oxygen atom transfer reaction; X-ray crystal structure of the complex [RullI(EDTA-H)PPh3]. Polyhedron, 1993, 12, 1443-1451.	2.2	13
95	Synthesis and characterization of gallium oxide nanoparticles. Arabian Journal of Chemistry, 2009, 2, 73-77.	4.9	13
96	One pot synthesis, molecular structure and spectroscopic studies (X-ray, IR, NMR, UV–Vis) of novel 2-(4,6-dimethoxy-1,3,5-triazin-2-yl) amino acid ester derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 159, 184-198.	3.9	13
97	The first catalytic hydrogenation of natural oils at ambient condition by an intercalated ruthenium complex in montmorillonite. Journal of Molecular Catalysis, 1989, 50, 97-102.	1.2	12
98	Oxidative Dehydrogenation Properties of Novel Nanostructured Polyoxovanadate Based Materials. Catalysis Letters, 2011, 141, 538-543.	2.6	12
99	Promoting effects of thoria on the nickel-manganese mixed oxide catalysts for the aerobic oxidation of benzyl alcohol. Arabian Journal of Chemistry, 2017, 10, 448-457.	4.9	12
100	Synthesis of Green Recyclable Magnetic Iron Oxide Nanomaterials Coated by Hydrophobic Plant Extracts for Efficient Collection of Oil Spills. Nanomaterials, 2019, 9, 1505.	4.1	12
101	A Facile Synthesis of ZrOx-MnCO3/Graphene Oxide (GRO) Nanocomposites for the Oxidation of Alcohols using Molecular Oxygen under Base Free Conditions. Catalysts, 2019, 9, 759.	3.5	12
102	Facile Sonochemical Preparation of Au-ZrO2 Nanocatalyst for the Catalytic Reduction of 4-Nitrophenol. Applied Sciences (Switzerland), 2020, 10, 503.	2.5	12
103	Enantioselection using modified zeolite catalysts. Journal of Molecular Catalysis A, 1996, 107, 291-295.	4.8	11
104	A Oneâ€Pot Synthesis of 1,3â€Benzoxazines. Synthetic Communications, 2004, 34, 71-77.	2.1	11
105	Ecofriendly Synthesis of Silver Nanoparticles Using Aqueous Extracts of Zingiber officinale (Ginger) and Nigella sativa L. Seeds (Black Cumin) and Comparison of Their Antibacterial Potential. Sustainability, 2020, 12, 10523.	3. 2	11
106	Enhanced Apoptosis by Functionalized Highly Reduced Graphene Oxide and Gold Nanocomposites in MCF-7 Breast Cancer Cells. ACS Omega, 2021, 6, 15147-15155.	3 . 5	11
107	Thermodynamics of homogeneous hydrogenation. Journal of Molecular Catalysis, 1989, 53, 23-36.	1.2	10
108	Kinetic Analysis of Thermal Decomposition of Unirradiated and \hat{I}^3 -Irradiated Tris(ACEtylacetonato)-Ruthenium(III) [Ru(acac)3]. Progress in Reaction Kinetics and Mechanism, 2007, 32, 1-27.	2.1	10

#	Article	IF	Citations
109	Synthesis and Comparative Catalytic Study of Zirconia-MnCO ₃ or -Mn ₂ O ₃ for the Oxidation of Benzylic Alcohols. ChemistryOpen, 2017, 6, 112-120.	1.9	10
110	Pd(PPh3)4 Catalyzed Synthesis of Indazole Derivatives as Potent Anticancer Drug. Applied Sciences (Switzerland), 2020, 10, 3792.	2.5	10
111	Thermodynamics of homogeneous hydrogenation. Journal of Molecular Catalysis, 1989, 54, 81-94.	1.2	9
112	Synthesis and Spectroscopic Studies of Some Novel Quinoline Derivatives. Synthetic Communications, 1992, 22, 2659-2671.	2.1	9
113	New aqua rhenium oxocomplex; synthesis, characterization, thermal studies, DFT calculations and catalytic oxidations. Arabian Journal of Chemistry, 2011, 4, 119-124.	4.9	9
114	Synthesis, Characterization, and Antimicrobial Studies of Novel Series of $2,4-\langle i\rangle$ (hydrazino)-6-substituted-1,3,5-triazine and Their Schiff Base Derivatives. Journal of Chemistry, 2018, 2018, 1-13.	1.9	9
115	Dinuclear uranium(vi) salen coordination compound: an efficient visible-light-active catalyst for selective reduction of CO2 to methanol. Dalton Transactions, 2020, 49, 17243-17251.	3.3	9
116	A stable .muperoxo complex of rhodium(II) intercalated in the interlamellar spaces of montmorillonite. Solid-state aluminum-27, silicon-29 and phosphorus-31 NMR and ESR investigation. Inorganic Chemistry, 1989, 28, 4427-4430.	4.0	8
117	A detailed study of the volatile components of Plectranthus asirensis of Saudi Arabian origin. Natural Product Research, 2016, 30, 2360-2363.	1.8	8
118	Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO ₃ , â€"MnO ₂ , and â€"Mn ₂ O ₃ Nanocomposites for Aerial Oxidation of Alcohols. Journal of Chemistry, 2017, 2017, 1-17.	1.9	8
119	Enhanced Photoluminescence and Photocatalytic Efficiency of La-Doped Bismuth Molybdate: Its Preparation and Characterization. Materials, 2020, 13, 35.	2.9	8
120	Ionothermal Synthesis of Metal Oxide-Based Nanocatalysts and Their Application towards the Oxidative Desulfurization of Dibenzothiophene. Journal of Chemistry, 2020, 2020, 1-11.	1.9	8
121	Evaluation of the Thermal and Morphological Properties of \hat{I}^3 -Irradiated Chitosan-Glycerol-Based Polymeric Films. Processes, 2021, 9, 1783.	2.8	8
122	Homogeneous hydrogenation of cyclohexene catalyzed by Ru(II) and (III) and their trichloro-stannato complexes: Proton NMR and rate studies. Journal of Molecular Catalysis, 1987, 42, 161-171.	1.2	7
123	Synthesis, Characterization, and Tautomerism of 1,3-Dimethyl Pyrimidine-2,4,6-Trione s-Triazinyl Hydrazone Derivatives. Journal of Chemistry, 2017, 2017, 1-10.	1.9	7
124	Silver-doped manganese based nanocomposites for aerial oxidation of alcohols. Materials Express, 2018, 8, 35-54.	0.5	7
125	Synthesis, characterization, and selective benzyl alcohol aerobic oxidation over Ni-loaded BaFeO3 mesoporous catalyst. Journal of King Saud University - Science, 2020, 32, 2059-2068.	3.5	7
126	Screening of potential cytotoxic activities of some medicinal plants of Saudi Arabia. Saudi Journal of Biological Sciences, 2022, 29, 1801-1807.	3.8	7

#	Article	IF	CITATIONS
127	Model Free Approach for Non-Isothermal Decomposition of Un-Irradiated and g-Irradiated Silver Acetate: New Route for Synthesis of Ag2O Nanoparticles. International Journal of Molecular Sciences, 2010, 11, 3600-3609.	4.1	6
128	Kinetic analysis for non-isothermal decomposition of unirradiated and \hat{I}^3 -irradiated indium acetyl acetonate. Materials Research, 2011, 14, 7-10.	1.3	6
129	Synthesis, Physicochemical Properties, and <i>in vitro</i> Antibacterial Screening of Palladium(II) Complexes Derived from Thiosemicarbazone. Chemistry and Biodiversity, 2013, 10, 1109-1119.	2.1	6
130	An Efficient and Mild Method for the Synthesis and Hydrazinolysis of N-Glyoxylamino Acid Esters. Journal of Chemistry, 2013, 2013, 1-6.	1.9	6
131	Identification of Active Phase for Selective Oxidation of Benzyl Alcohol with Molecular Oxygen Catalyzed by Copper-Manganese Oxide Nanoparticles. Journal of Chemistry, 2013, 2013, 1-8.	1.9	6
132	Radiation-induced synthesis of ZrO ₂ nanoparticles by thermal decomposition of zirconium acetylacetonate. Radiation Effects and Defects in Solids, 2013, 168, 950-958.	1.2	6
133	Benzyl Alcohol Assisted Synthesis and Characterization of Highly Reduced Graphene Oxide (HRG)@ZrO ₂ Nanocomposites. ChemistrySelect, 2017, 2, 3078-3083.	1.5	6
134	Comparative Catalytic Evaluation of Nano-ZrO _{<i>x</i>} Promoted Manganese Catalysts: Kinetic Study and the Effect of Dopant on the Aerobic Oxidation of Secondary Alcohols. Advances in Materials Science and Engineering, 2017, 2017, 1-14.	1.8	6
135	Solventless Mechanochemical Fabrication of ZnO–MnCO3/N-Doped Graphene Nanocomposite: Efficacious and Recoverable Catalyst for Selective Aerobic Dehydrogenation of Alcohols under Alkali-Free Conditions. Catalysts, 2021, 11, 760.	3.5	6
136	APPLICATION OF PHOSPHORUS, ARSENIC AND ANTIMONY REAGENTS IN THE SYNTHESIS OF HETEROCYCLIC COMPOUNDS. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 61, 367-372.	1.6	5
137	Kinetic Analysis for the Non-Isothermal Decomposition of Un-Irradiated and Y-Irradiated Zirconium Acetylacetonate. Progress in Reaction Kinetics and Mechanism, 2012, 37, 59-75.	2.1	5
138	Kinetic Studies of Isothermal Decomposition of Unirradiated and \hat{l} -Irradiated Gallium Acetylacetonate: New Route for Synthesis of Gallium Oxide Nanoparticles. Progress in Reaction Kinetics and Mechanism, 2012, 37, 249-262.	2.1	5
139	Liquid Phase Selective Oxidation of Aromatic Alcohols Employing Nanoparticles of Zirconia Supported on Nickel Manganese Oxide: Synthesis, Characterization and Catalytic Evaluation. Asian Journal of Chemistry, 2013, 25, 8927-8932.	0.3	5
140	Microwave irradiation: synthesis and characterization of \hat{l}_{\pm} -ketoamide and bis (\hat{l}_{\pm} -ketoamide) derivatives via the ring opening of N-acetylisatin. Chemistry Central Journal, 2014, 8, 27.	2.6	5
141	A new ladder-type dichloro(2,2-dimethyl-1,3-diaminopropane) copper complex: Synthesis, structural studies and selective sensing behavior towards a ketone molecule. Polyhedron, 2019, 170, 287-293.	2.2	5
142	Eco-Friendly and Solvent-Less Mechanochemical Synthesis of ZrO2â€"MnCO3/N-Doped Graphene Nanocomposites: A Highly Efficacious Catalyst for Base-Free Aerobic Oxidation of Various Types of Alcohols. Catalysts, 2020, 10, 1136.	3.5	5
143	Synthesis and Characterization of CoxOy–MnCO3 and CoxOy–Mn2O3 Catalysts: A Comparative Catalytic Assessment Towards the Aerial Oxidation of Various Kinds of Alcohols. Processes, 2020, 8, 910.	2.8	5
144	Study of Partial Oxidation of Methane by Ni/Al2O3 Catalyst: Effect of Support Oxides of Mg, Mo, Ti and Y as Promoters. Molecules, 2020, 25, 5029.	3.8	5

#	Article	IF	Citations
145	Kinetics of the formation of $1\frac{1}{4}$ -peroxo bis(ethylene-diaminetetraacetate)-ruthenate(IV) By the reaction of H2O2 with ethylenediaminetetraacetate-ruthenate(III) complex. Journal of Molecular Catalysis, 1988, 44, 279-283.	1.2	4
146	Protected Gold Nanoparticles with Thioethers and Amines As Surrogate Ligands. Journal of Chemistry, 2013, 2013, 1-4.	1.9	4
147	Molecular structure investigation and tautomerism aspects of (E)-3-benzylideneindolin-2-one. Journal of Chemical Sciences, 2015, 127, 1547-1556.	1.5	4
148	Facile synthesis of nickel based nanostructures from Ni[EMIM]Cl2 ionic liquid precursor: effects of thermal and chemical methods on the properties of nanoparticles. RSC Advances, 2016, 6, 86340-86345.	3.6	4
149	NOVEL HETEROCYCLIC COMPOUNDS VIA AZA- AND BIS-AZA-WITTIG REACTIONS. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 63, 301-305.	1.6	3
150	Synthesis, characterisation, DFT and biomedical investigation of new Ga(III) complex with imidazole. Journal of Chemical Research, 2008, 2008, 163-166.	1.3	3
151	Corals of In2O3 Nanoparticles, Synthesis by the Thermal Decomposition of \hat{I}^3 -Irradiated Indium Acetate in the Presence of a Nonaqueous Medium. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 858-863.	0.6	3
152	Selective Oxidation of Benzylic Alcohols with Molecular Oxygen Catalyzed by Copper-Manganese Oxide Nanoparticles. Asian Journal of Chemistry, 2013, 25, 4815-4819.	0.3	3
153	Ytterbia doped nickel–manganese mixed oxide catalysts for liquid phase oxidation of benzyl alcohol. Journal of Saudi Chemical Society, 2017, 21, 878-886.	5.2	3
154	Ag2O Nanoparticles-Doped Manganese Immobilized on Graphene Nanocomposites for Aerial Oxidation of Secondary Alcohols. Metals, 2018, 8, 468.	2.3	3
155	Selective Oxidation of Citronellol over Titanosilicate Catalysts. Catalysts, 2020, 10, 1284.	3.5	3
156	Selective Catalytic Oxidation of Toluene to Benzaldehyde: Effect of Aging Time and Calcination Temperature Using CuxZnyO Mixed Metal Oxide Nanoparticles. Catalysts, 2021, 11, 354.	3.5	3
157	Title is missing!. Catalysis Letters, 1997, 46, 249-254.	2.6	2
158	Effect of \hat{I}^3 -ray irradiation on the properties of nanostructured oxovanadate based oxidative dehydrogenation catalysts. Radiation Physics and Chemistry, 2013, 88, 56-59.	2.8	2
159	Synthesis of Phenylcarbamic Acid and 2-[2-Oxo-3-(4-substituted phenylimino)-indolin-1-yl]acetohydrazide Derivatives as Promising Antifungal Agents. Asian Journal of Chemistry, 2014, 26, 7665-7672.	0.3	2
160	Dehydrogenation of Ethylbenzene in Presence of Carbon Dioxide Over Supported Fe2O3-Cr2O3 Mixed Oxides Catalysts. Asian Journal of Chemistry, 2014, 26, 504-508.	0.3	2
161	A Study and Comparison of the Preparation of Gadolinium Aluminate Nanoparticles Using \hat{l}^3 -Irradiated and Unirradiated Precursors. Advances in Materials Science and Engineering, 2018, 2018, 1-6.	1.8	2
162	Metal-free Catalyzed One-Pot Multicomponent Synthesis of (E)-3-(2-((5-(Benzylideneamino)-1,3,4-thiadiazol-2-yl)thio) Acetyl)-2H-chromen-2-one Derivatives and Their Biological Evaluation. Journal of Chemistry, 2020, 2020, 1-7.	1.9	2

#	Article	IF	CITATIONS
163	Pyrene Functionalized Highly Reduced Graphene Oxide-palladium Nanocomposite: A Novel Catalyst for the Mizoroki-Heck Reaction in Water. Frontiers in Chemistry, 2022, 10, 872366.	3.6	2
164	Chemical effects induced by \hat{I}^3 -irradiation in solid and in aqueous methanol solutions of 4-iodophenol. Radiation Effects and Defects in Solids, 2005, 160, 173-180.	1.2	1
165	Kinetic studies for the non-isothermal decomposition of un-irradiated and \hat{I}^3 -irradiated ruthenium(III) acetylacetonate. Radiation Effects and Defects in Solids, 2009, 164, 266-275.	1.2	1
166	Radiation-induced synthesis of RuO2nanoparticles by thermal decomposition of Ru-tris-acetylacetonate. Radiation Effects and Defects in Solids, 2011, 166, 951-958.	1.2	1
167	Pd(II) complexes based on quinoline derivative: Structural characterization and their role as a catalyst for hydrogenation of (E)-1-methyl-4-(2-nitrovinyl)benzene. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 123, 1-6.	3.9	1
168	Secondary Metabolites from Two Plectranthus Species. Chemistry of Natural Compounds, 2019, 55, 367-369.	0.8	1
169	Synthesis of 1,2-Dihydro-Substituted Aniline Analogues Involving <i>N</i> -Phenyl-3-aza-Cope Rearrangement Using a Metal-Free Catalytic Approach. Journal of Chemistry, 2020, 2020, 1-8.	1.9	1
170	ZrCl4-catalyzed one-pot multi-component synthesis of hexahydropyrano pyrimidinone derivatives. Organic Communications, 2020, 13, 28-32.	0.8	1
171	Chemical effects induced by \hat{I}^3 -irradiation in solid 2-iodobenzoic acid. Radiation Effects and Defects in Solids, 2006, 161, 467-471.	1.2	O
172	Radiation-induced degradation of solid fluorene. Radiation Effects and Defects in Solids, 2006, 161, 473-477.	1.2	0
173	Kinetics of isothermal decomposition of unirradiated and \hat{I}^3 -irradiated zirconium acetylacetonate. Radiation Effects and Defects in Solids, 2012, 167, 342-351.	1.2	O
174	Chelation-Assisted Substrate-Controlled Asymmetric Lithiation-Allylboration of Chiral Carbamate 1,2,4-Butanetriol Acetonide. Molecules, 2015, 20, 9890-9905.	3.8	0
175	Crystal structure of 6-hydroxy-5-((2-hydroxy-6-oxocyclohex-1-en-1-yl)(phenyl)methyl)-1,3-dimethylpyrimidine-2,4(1 <i>H</i> ,3 <i>H</i>) C ₁₉ H ₂₀ N ₂ O ₅ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2016, 231, 849-851.	-dione, 0.3	О