Ian Donohue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4644955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predators mitigate the destabilising effects of heatwaves on multitrophic stream communities. Global Change Biology, 2022, 28, 403-416.	9.5	18
2	Integrating multiple dimensions of ecological stability into a vulnerability framework. Journal of Ecology, 2022, 110, 374-386.	4.0	7
3	Nutrients and herbivores impact grassland stability across spatial scales through different pathways. Global Change Biology, 2022, 28, 2678-2688.	9.5	18
4	Alternate patterns of temperature variation bring about very different disease outcomes at different mean temperatures. ELife, 2022, 11, .	6.0	19
5	Utility of acoustic indices for ecological monitoring in complex sonic environments. Ecological Indicators, 2021, 121, 107114.	6.3	36
6	Fertilized graminoids intensify negative drought effects on grassland productivity. Global Change Biology, 2021, 27, 2441-2457.	9.5	39
7	General statistical scaling laws for stability in ecological systems. Ecology Letters, 2021, 24, 1474-1486.	6.4	32
8	Enhance environmental policy coherence to meet the Sustainable Development Goals. Journal of Cleaner Production, 2021, 296, 126502.	9.3	38
9	Endothermy makes fishes faster but does not expand their thermal niche. Functional Ecology, 2021, 35, 1951-1959.	3.6	20
10	Reply to: Empirical pressure-response relations can benefit assessment of safe operating spaces. Nature Ecology and Evolution, 2021, 5, 1080-1081.	7.8	1
11	Universal scaling of robustness of ecosystem services to species loss. Nature Communications, 2021, 12, 5167.	12.8	19
12	Soil properties as key predictors of global grassland production: Have we overlooked micronutrients?. Ecology Letters, 2021, 24, 2713-2725.	6.4	28
13	Opposing community assembly patterns for dominant and nondominant plant species in herbaceous ecosystems globally. Ecology and Evolution, 2021, 11, 17744-17761.	1.9	8
14	Integrating the underlying structure of stochasticity into community ecology. Ecology, 2020, 101, e02922.	3.2	113
15	Going beyond Gross Domestic Product as an indicator to bring coherence to the Sustainable Development Goals. Journal of Cleaner Production, 2020, 248, 119232.	9.3	83
16	Individual species provide multifaceted contributions to the stability of ecosystems. Nature Ecology and Evolution, 2020, 4, 1594-1601.	7.8	48
17	Warming can alter host behavior in a similar manner to infection with behavior-manipulating parasites. Oecologia, 2020, 194, 65-74.	2.0	1
18	Thresholds for ecological responses to global change do not emerge from empirical data. Nature Ecology and Evolution, 2020, 4, 1502-1509.	7.8	151

Ian Donohue

#	Article	IF	CITATIONS
19	Nutrients cause grassland biomass to outpace herbivory. Nature Communications, 2020, 11, 6036.	12.8	35
20	Advancing our understanding of ecological stability. Ecology Letters, 2019, 22, 1349-1356.	6.4	147
21	Measuring resilience is essential to understand it. Nature Sustainability, 2019, 2, 895-897.	23.7	76
22	The predictability of ecological stability in a noisy world. Nature Ecology and Evolution, 2019, 3, 251-259.	7.8	35
23	Coping with multiple enemies: pairwise interactions do not predict evolutionary change in complex multitrophic communities. Oikos, 2019, 128, 1588-1599.	2.7	16
24	Infection with behaviour-manipulating parasites enhances bioturbation by key aquatic detritivores. Parasitology, 2019, 146, 1528-1531.	1.5	6
25	Why a Planetary Boundary, If It Is Not Planetary, and the Boundary Is Undefined? A Reply to Rockström et al Trends in Ecology and Evolution, 2018, 33, 234.	8.7	16
26	Planetary Boundaries for Biodiversity: Implausible Science, Pernicious Policies. Trends in Ecology and Evolution, 2018, 33, 71-73.	8.7	75
27	Combined effects of warming and nutrients on marine communities are moderated by predators and vary across functional groups. Clobal Change Biology, 2018, 24, 5853-5866.	9.5	18
28	Temporally variable niche overlap and competitive potential of an introduced and a native mysid shrimp. Hydrobiologia, 2018, 823, 109-119.	2.0	2
29	A trophic interaction framework for identifying the invasive capacity of novel organisms. Methods in Ecology and Evolution, 2017, 8, 1786-1794.	5.2	16
30	Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Global Change Biology, 2017, 23, 2962-2972.	9.5	54
31	Herbivory enables marine communities to resist warming. Science Advances, 2017, 3, e1701349.	10.3	21
32	Dietary niche constriction when invaders meet natives: evidence from freshwater decapods. Journal of Animal Ecology, 2016, 85, 1098-1107.	2.8	42
33	Temporal variability of a single population can determine the vulnerability of communities to perturbations. Journal of Ecology, 2016, 104, 887-897.	4.0	23
34	Life history timing, but not body size, of Mysis salemaai (Crustacea: Mysida) conserved across a trophic gradient at its southern distribution. Hydrobiologia, 2016, 775, 83-95.	2.0	2
35	Navigating the complexity of ecological stability. Ecology Letters, 2016, 19, 1172-1185.	6.4	401
36	Oil extraction imperils Africa's Great Lakes. Science, 2016, 354, 561-562.	12.6	15

ΙΑΝ DΟΝΟΗUΕ

#	Article	IF	CITATIONS
37	Waterâ€level fluctuations regulate the structure and functioning of natural lakes. Freshwater Biology, 2016, 61, 251-264.	2.4	102
38	Warming can enhance invasion success through asymmetries in energetic performance. Journal of Animal Ecology, 2016, 85, 419-426.	2.8	21
39	Ecosystemâ€level effects of a globally spreading invertebrate invader are not moderated by a functionally similar native. Journal of Animal Ecology, 2015, 84, 1628-1636.	2.8	14
40	Importance of Long-Term Cycles for Predicting Water Level Dynamics in Natural Lakes. PLoS ONE, 2015, 10, e0119253.	2.5	18
41	Nutrient enrichment alters the consequences of species loss. Journal of Ecology, 2015, 103, 862-870.	4.0	30
42	Single gene locus changes perturb complex microbial communities as much as apex predator loss. Nature Communications, 2015, 6, 8235.	12.8	15
43	Elevated temperatures interact with habitat quality to undermine survival of ectotherms in climatic refugia. Diversity and Distributions, 2015, 21, 200-210.	4.1	12
44	Quantifying ecological responses to amplified water level fluctuations in standing waters: an experimental approach. Journal of Applied Ecology, 2014, 51, 1282-1291.	4.0	39
45	Downscaling the non-stationary effect of climate forcing on local-scale dynamics: the importance of environmental filters. Climatic Change, 2014, 124, 333-346.	3.6	13
46	Ecology and mode-of-life explain lifespan variation in birds and mammals. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140298.	2.6	209
47	Distinguishing between direct and indirect effects of predators in complex ecosystems. Journal of Animal Ecology, 2013, 82, 438-448.	2.8	50
48	On the dimensionality of ecological stability. Ecology Letters, 2013, 16, 421-429.	6.4	315
49	Environmental context determines multiâ€ŧrophic effects of consumer species loss. Global Change Biology, 2013, 19, 431-440.	9.5	52
50	Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology. PLoS ONE, 2012, 7, e31757.	2.5	297
51	Temporal variability within disturbance events regulates their effects on natural communities. Oecologia, 2011, 166, 795-806.	2.0	36
52	210Pb-dating of a lake sediment core from Lough Carra (Co. Mayo, western Ireland): use of paleolimnological data for chronology validation below the 210Pb dating horizon. Journal of Environmental Radioactivity, 2011, 102, 495-499.	1.7	22
53	Importance of consumers on exposed and sheltered rocky shores. Marine Ecology - Progress Series, 2011, 443, 65-75.	1.9	22
54	Interactions among temporal patterns determine the effects of multiple stressors. Ecological Applications, 2010, 20, 1794-1800.	3.8	46

Ian Donohue

#	Article	IF	CITATIONS
55	Rapid ecosystem recovery from diffuse pollution after the Great Irish Famine. Ecological Applications, 2010, 20, 1733-1743.	3.8	16
56	Nutrient enrichment homogenizes lake benthic assemblages at local and regional scales. Ecology, 2009, 90, 3470-3477.	3.2	158
57	Assessment of eutrophication pressure on lakes using littoral invertebrates. Hydrobiologia, 2009, 633, 105-122.	2.0	57
58	Impacts of increased sediment loads on the ecology of lakes. Biological Reviews, 2009, 84, 517-531.	10.4	124
59	Differential contribution of concentration and exposure time to sediment dose effects on stream biota. Journal of the North American Benthological Society, 2009, 28, 110-121.	3.1	31
60	Nutrient optima and tolerances of benthic invertebrates, the effects of taxonomic resolution and testing of selected metrics in lakes using an extensive European data base. Aquatic Ecology, 2008, 42, 277-291.	1.5	41
61	Quantifying variability within water samples: The need for adequate subsampling. Water Research, 2008, 42, 476-482.	11.3	22
62	Linking catchment characteristics and water chemistry with the ecological status of Irish rivers. Water Research, 2006, 40, 91-98.	11.3	126
63	Field evidence for stoichiometric relationships between zooplankton and N and P availability in a shallow calcareous lake. Freshwater Biology, 2006, 51, 1589-1604.	2.4	12
64	Linking soil phosphorus to water quality in the Mask catchment of western Ireland through the analysis of moist soil samples. Agriculture, Ecosystems and Environment, 2006, 112, 300-312.	5.3	15
65	Nitrogen retention in a river system and the effects of river morphology and lakes. Water Science and Technology, 2005, 51, 19-29.	2.5	20
66	Using sediments to assess the resistance of a calcareous lake to diffuse nutrient loading. Archiv Für Hydrobiologie, 2005, 164, 109-125.	1.1	10
67	Importance of spatial and temporal patterns for assessment of risk of diffuse nutrient emissions to surface waters. Journal of Hydrology, 2005, 304, 183-192.	5.4	65
68	Seasonal patterns of sediment loading and benthic invertebrate community dynamics in Lake Tanganyika, Africa. Freshwater Biology, 2004, 49, 320-331.	2.4	25
69	Size-specific effects of increased sediment loads on gastropod communities in Lake Tanganyika, Africa. Hydrobiologia, 2004, 522, 337-342.	2.0	9
70	Land use, sediment loads and dispersal pathways from two catchments at the southern end of Lake Tanganyika, Africa: implications for lake management. Environmental Geology, 2003, 44, 448-455.	1.2	14
71	In situ experiments on the effects of increased sediment loads on littoral rocky shore communities in Lake Tanganyika, East Africa. Freshwater Biology, 2003, 48, 1603-1616.	2.4	26
72	Effects of sediment particle size composition on survivorship of benthic invertebrates from Lake Tanganyika, Africa. Archiv Für Hydrobiologie, 2003, 157, 131-144.	1.1	36