Bernhard Payer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4642881/publications.pdf Version: 2024-02-01

REDNHADD DAVED

#	Article	IF	CITATIONS
1	Controlled Xâ€chromosome dynamics defines meiotic potential of female mouse <i>in vitro</i> germ cells. EMBO Journal, 2022, 41, .	7.8	13
2	Single human oocyte transcriptome analysis reveals distinct maturation stageâ€dependent pathways impacted by age. Aging Cell, 2021, 20, e13360.	6.7	43
3	Chromosome compartments on the inactive X guide TAD formation independently of transcription during X-reactivation. Nature Communications, 2021, 12, 3499.	12.8	29
4	Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1, and TIA1. Genome Biology, 2021, 22, 171.	8.8	12
5	A conserved expression signature predicts growth rate and reveals cell & lineage-specific differences. PLoS Computational Biology, 2021, 17, e1009582.	3.2	4
6	Editorial: Gene Regulation From the X-Chromosome During Development and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 272.	3.7	0
7	PRDM14 controls X-chromosomal and global epigenetic reprogramming of H3K27me3 in migrating mouse primordial germ cells. Epigenetics and Chromatin, 2019, 12, 38.	3.9	27
8	Screen for reactivation of MeCP2 on the inactive X chromosome identifies the BMP/TGF-Î ² superfamily as a regulator of XIST expression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1619-1624.	7.1	51
9	Epigenetic Regulation of X-Chromosome Inactivation. , 2017, , 113-158.		2
10	X-chromosome activity in naive human pluripotent stem cells—are we there yet?. Stem Cell Investigation, 2017, 4, 54-54.	3.0	10
11	Genome-wide identification of autosomal genes with allelic imbalance of chromatin state. PLoS ONE, 2017, 12, e0182568.	2.5	16
12	Developmental regulation of X-chromosome inactivation. Seminars in Cell and Developmental Biology, 2016, 56, 88-99.	5.0	46
13	A high-throughput small molecule screen identifies synergism between DNA methylation and Aurora kinase pathways for X reactivation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14366-14371.	7.1	25
14	EPOP Functionally Links Elongin and Polycomb in Pluripotent Stem Cells. Molecular Cell, 2016, 64, 645-658.	9.7	117
15	A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science, 2015, 349, .	12.6	397
16	Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome. Genetics, 2015, 200, 537-549.	2.9	38
17	<i>Xist</i> imprinting is promoted by the hemizygous (unpaired) state in the male germ line. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14415-14422.	7.1	22
18	Coupling of X-Chromosome reactivation with the pluripotent stem cell state. RNA Biology, 2014, 11, 798-807.	3.1	32

Bernhard Payer

#	Article	IF	CITATIONS
19	Tsix RNA and the Germline Factor, PRDM14, Link X Reactivation and Stem Cell Reprogramming. Molecular Cell, 2013, 52, 805-818.	9.7	96
20	Molecular Signatures of Human Induced Pluripotent Stem Cells Highlight Sex Differences and Cancer Genes. Cell Stem Cell, 2012, 11, 75-90.	11.1	143
21	An <i>ex Vivo</i> Model for Imprinting: Mutually Exclusive Binding of Cdx2 and Oct4 as a Switch for Imprinted and Random X-Inactivation. Genetics, 2012, 192, 857-868.	2.9	19
22	X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells. Human Genetics, 2011, 130, 265-280.	3.8	58
23	Two-Step Imprinted X Inactivation: Repeat versus Genic Silencing in the Mouse. Molecular and Cellular Biology, 2010, 30, 3187-3205.	2.3	115
24	Mst1 and Mst2 Maintain Hepatocyte Quiescence andÂSuppress Hepatocellular Carcinoma Development through Inactivation of the Yap1 Oncogene. Cancer Cell, 2009, 16, 425-438.	16.8	809
25	X Chromosome Dosage Compensation: How Mammals Keep the Balance. Annual Review of Genetics, 2008, 42, 733-772.	7.6	453
26	Generation ofstella-GFP transgenic mice: A novel tool to study germ cell development. Genesis, 2006, 44, 75-83.	1.6	150
27	Germline Recruitment in Mice: A Genetic Program for Epigenetic Reprogramming. , 2006, , 143-174.		8
28	Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 2005, 436, 207-213.	27.8	915
29	Blimp1 and the Emergence of the Germ Line during Development in the Mouse. Cell Cycle, 2005, 4, 1736-1740.	2.6	78
30	stella Is a Maternal Effect Gene Required for Normal Early Development in Mice. Current Biology, 2003, 13, 2110-2117.	3.9	352
31	In Vivo Time-Lapse Imaging of Cell Divisions during Neurogenesis in the Developing Zebrafish Retina. Neuron, 2003, 37, 597-609.	8.1	183
32	Specification of germ cell fate in mice. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1363-1370.	4.0	82