
Tone Birkemoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4642170/publications.pdf Version: 2024-02-01

TONE RIDKEMOE

#	Article	IF	CITATIONS
1	Flattening the curve: approaching complete sampling for diverse beetle communities. Insect Conservation and Diversity, 2022, 15, 157-167.	3.0	10
2	Divergent responses of functional diversity to an elevational gradient for vascular plants, bryophytes and lichens. Journal of Vegetation Science, 2022, 33, .	2.2	5
3	DNA metabarcoding reveals host-specific communities of arthropods residing in fungal fruit bodies. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212622.	2.6	6
4	Functional structure of European forest beetle communities is enhanced by rare species. Biological Conservation, 2022, 267, 109491.	4.1	16
5	Legacies of invertebrate exclusion and tree secondary metabolites control fungal communities in dead wood. Molecular Ecology, 2022, 31, 3241-3253.	3.9	6
6	The importance of foundation species identity: a field experiment with lichens and their associated micro-arthropod communities. Basic and Applied Ecology, 2022, , .	2.7	0
7	Disentangling phylogenetic relations and biogeographic history within the Cucujus haematodes species group (Coleoptera: Cucujidae). Molecular Phylogenetics and Evolution, 2022, 173, 107527.	2.7	1
8	Contrasting responses of plant and lichen carbonâ€based secondary compounds across an elevational gradient. Functional Ecology, 2021, 35, 330-341.	3.6	9
9	Veteran trees have divergent effects on beetle diversity and wood decomposition. PLoS ONE, 2021, 16, e0248756.	2.5	2
10	Choosy beetles: How host trees and southern boreal forest naturalness may determine dead wood beetle communities. Forest Ecology and Management, 2021, 487, 119023.	3.2	12
11	What does a threatened saproxylic beetle look like? Modelling extinction risk using a new morphological trait database. Journal of Animal Ecology, 2021, 90, 1934-1947.	2.8	23
12	The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597, 77-81.	27.8	123
13	Traits mediate niches and coâ€occurrences of forest beetles in ways that differ among bioclimatic regions. Journal of Biogeography, 2021, 48, 3145-3157.	3.0	16
14	Species composition of beetles grouped by host association in hollow oaks reveals management-relevant patterns. Journal of Insect Conservation, 2020, 24, 65-86.	1.4	6
15	Parasitoids indicate major climateâ€induced shifts in arctic communities. Global Change Biology, 2020, 26, 6276-6295.	9.5	26
16	Veteran trees are a source of natural enemies. Scientific Reports, 2020, 10, 18485.	3.3	10
17	Sampling beetle communities: Trap design interacts with weather and species traits to bias capture rates. Ecology and Evolution, 2020, 10, 14300-14308.	1.9	9
18	Environmental conditions alter successional trajectories on an ephemeral resource: a field experiment with beetles in dead wood. Oecologia, 2020, 194, 205-219.	2.0	8

Tone Birkemoe

#	Article	IF	CITATIONS
19	Forest fragmentation modifies the composition of bumblebee communities and modulates their trophic and competitive interactions for pollination. Scientific Reports, 2020, 10, 10872.	3.3	17
20	Legacy effects of experimental environmental change on soil microâ€arthropod communities. Ecosphere, 2020, 11, e03030.	2.2	7
21	Hollow oaks and beetle functional diversity: Significance of surroundings extends beyond taxonomy. Ecology and Evolution, 2020, 10, 819-831.	1.9	16
22	Contrasting drivers of communityâ€level trait variation for vascular plants, lichens and bryophytes across an elevational gradient. Functional Ecology, 2019, 33, 2430-2446.	3.6	36
23	Revealing hidden insect–fungus interactions; moderately specialized, modular and anti-nested detritivore networks. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172833.	2.6	16
24	Longâ€lasting effects of logging on beetles in hollow oaks. Ecology and Evolution, 2018, 8, 10126-10137.	1.9	5
25	Age and level of selfâ€organization affect the smallâ€scale distribution of springtails (Collembola). Ecosphere, 2018, 9, e02058.	2.2	20
26	Insect-Fungus Interactions in Dead Wood Systems. Zoological Monographs, 2018, , 377-427.	1.1	45
27	Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Functional Ecology, 2018, 32, 2571-2582.	3.6	25
28	Temperature stress deteriorates bed bug (Cimex lectularius) populations through decreased survival, fecundity and offspring success. PLoS ONE, 2018, 13, e0193788.	2.5	15
29	Desiccant dust and the use of CO2 gas as a mobility stimulant for bed bugs: a potential control solution?. Journal of Pest Science, 2017, 90, 249-259.	3.7	14
30	Interactions between body size, abundance, seasonality, and phenology in forest beetles. Ecology and Evolution, 2017, 7, 1091-1100.	1.9	26
31	Habitat connectivity affects specialist species richness more than generalists in veteran trees. Forest Ecology and Management, 2017, 403, 96-102.	3.2	33
32	Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecology, 2017, 29, 76-84.	1.6	47
33	Effect of Habitat Size, Quality, and Isolation on Functional Groups of Beetles in Hollow Oaks. Journal of Insect Science, 2016, 16, 26.	1.5	26
34	Head lice predictors and infestation dynamics among primary school children in Norway. Family Practice, 2016, 33, 23-29.	1.9	30
35	Priority effects of early successional insects influence late successional fungi in dead wood. Ecology and Evolution, 2015, 5, 4896-4905.	1.9	32
36	Specialists in ancient trees are more affected by climate than generalists. Ecology and Evolution, 2015, 5, 5632-5641.	1.9	26

Tone Birkemoe

#	Article	IF	CITATIONS
37	Trophic levels and habitat specialization of beetles caught on experimentally added aspen wood: Does trap type really matter?. Journal of Insect Conservation, 2015, 19, 163-173.	1.4	11
38	Scale-specific responses of saproxylic beetles: combining dead wood surveys with data from satellite imagery. Journal of Insect Conservation, 2015, 19, 1053-1062.	1.4	15
39	Reactive forest management can also be proactive for wood-living beetles in hollow oak trees. Biological Conservation, 2014, 180, 75-83.	4.1	30
40	Do conservation measures in forest work? A comparison of three area-based conservation tools for wood-living species in boreal forests. Forest Ecology and Management, 2014, 330, 8-16.	3.2	22
41	Life history parameters of two geographically separated populations of Spalangia cameroni, a microhymenopteran pupal parasitoid of muscoid flies. BioControl, 2012, 57, 375-385.	2.0	11
42	Phenology and life history of the blowfly Calliphora vicina in stockfish production areas. Entomologia Experimentalis Et Applicata, 2011, 139, 35-46.	1.4	38
43	Stable fly (Stomoxys calcitrans) and house fly (Musca domestica) densities: a comparison of three monitoring methods on pig farms. Journal of Pest Science, 2011, 84, 273-280.	3.7	12
44	Blowfly (Diptera, Calliphoridae) damage on stockfish in northern Norway: pest species, damage assessment and the potential of mass trapping. Journal of Pest Science, 2010, 83, 329-337.	3.7	20
45	Parasitism of the house fly parasitoid Spalangia cameroni on Norwegian pig farms: local effect of release method. BioControl, 2010, 55, 583-591.	2.0	7
46	Tracing carpenter ants (Camponotussp.) in buildings with radioactive iodine1311. International Journal of Pest Management, 2009, 55, 45-49.	1.8	2
47	Biological control of Musca domestica and Stomoxys calcitrans by mass releases of the parasitoid Spalangia cameroni on two Norwegian pig farms. BioControl, 2009, 54, 425-436.	2.0	26
48	What window traps can tell us: effect of placement, forest openness and beetle reproduction in retention trees. Journal of Insect Conservation, 2009, 13, 183-191.	1.4	59