Mike S M Jetten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4641732/publications.pdf

Version: 2024-02-01

449 papers 55,826 citations

118 h-index 217 g-index

478 all docs

478 docs citations

times ranked

478

 $\begin{array}{c} 20783 \\ \text{citing authors} \end{array}$

#	Article	IF	Citations
1	Universal activity-based labeling method for ammonia- and alkane-oxidizing bacteria. ISME Journal, 2022, 16, 958-971.	9.8	12
2	Authors need to be prudent when assigning names to microbial isolates. Antonie Van Leeuwenhoek, 2022, 115, 1-5.	1.7	4
3	Mucisphaera calidilacus gen. nov., sp. nov., a novel planctomycete of the class Phycisphaerae isolated in the shallow sea hydrothermal system of the Lipari Islands. Antonie Van Leeuwenhoek, 2022, 115, 407.	1.7	8
4	Unraveling Nitrogen, Sulfur, and Carbon Metabolic Pathways and Microbial Community Transcriptional Responses to Substrate Deprivation and Toxicity Stresses in a Bioreactor Mimicking Anoxic Brackish Coastal Sediment Conditions. Frontiers in Microbiology, 2022, 13, 798906.	3.5	2
5	Effect of water management on microbial diversity and composition in an Italian rice field system. FEMS Microbiology Ecology, 2022, 98, .	2.7	11
6	Methanethiol Consumption and Hydrogen Sulfide Production by the Thermoacidophilic Methanotroph Methylacidiphilum fumariolicum SolV. Frontiers in Microbiology, 2022, 13, 857442.	3.5	15
7	Towards a more labor-saving way in microbial ammonium oxidation: A review on complete ammonia oxidization (comammox). Science of the Total Environment, 2022, 829, 154590.	8.0	53
8	Amsterdam urban canals contain novel niches for methane ycling microorganisms. Environmental Microbiology, 2022, 24, 82-97.	3.8	8
9	Metagenomic evidence of a novel family of anammox bacteria in a subsea environment. Environmental Microbiology, 2022, 24, 2348-2360.	3.8	22
10	Methane-Dependent Extracellular Electron Transfer at the Bioanode by the Anaerobic Archaeal Methanotroph "Candidatus Methanoperedens― Frontiers in Microbiology, 2022, 13, 820989.	3.5	10
11	Investigation of central energy metabolism-related protein complexes of ANME-2d methanotrophic archaea by complexome profiling. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148308.	1.0	12
12	Air pollution could drive global dissemination of antibiotic resistance genes. ISME Journal, 2021, 15, 270-281.	9.8	95
13	Enrichment and physiological characterization of a novel comammox <i>Nitrospira </i> i> indicates ammonium inhibition of complete nitrification. ISME Journal, 2021, 15, 1010-1024.	9.8	117
14	Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. ISME Journal, 2021, 15, 1150-1164.	9.8	39
15	Autotrophic and mixotrophic metabolism of an anammox bacterium revealed by in vivo 13C and 2H metabolic network mapping. ISME Journal, 2021, 15, 673-687.	9.8	64
16	Methylacidimicrobium thermophilum AP8, a Novel Methane- and Hydrogen-Oxidizing Bacterium Isolated From Volcanic Soil on Pantelleria Island, Italy. Frontiers in Microbiology, 2021, 12, 637762.	3.5	14
17	Enrichment of novel <i>Verrucomicrobia</i> , <i>Bacteroidetes</i> , and <i>Krumholzibacteria</i> in an oxygenâ€limited methaneâ€and ironâ€fed bioreactor inoculated with Bothnian Sea sediments. MicrobiologyOpen, 2021, 10, e1175.	3.0	16
18	Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiology Reviews, 2021, 45, .	8.6	49

#	Article	IF	CITATIONS
19	Draft genome of a novel methanotrophic Methylobacter sp. from the volcanic soils of Pantelleria Island. Antonie Van Leeuwenhoek, 2021, 114, 313-324.	1.7	12
20	Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments. Frontiers in Microbiology, 2021, 12, 631621.	3.5	62
21	Abundance and Functional Importance of Complete Ammonia Oxidizers and Other Nitrifiers in a Riparian Ecosystem. Environmental Science & Environmental	10.0	38
22	Selective enrichment and metagenomic analysis of three novel comammox $\langle i \rangle$ Nitrospira $\langle i \rangle$ in a urine-fed membrane bioreactor. ISME Communications, 2021, 1, .	4.2	27
23	A Novel Laboratory-Scale Mesocosm Setup to Study Methane Emission Mitigation by Sphagnum Mosses and Associated Methanotrophs. Frontiers in Microbiology, 2021, 12, 652486.	3.5	3
24	A novel methoxydotrophic metabolism discovered in the hyperthermophilic archaeon <i>Archaeoglobus fulgidus</i> . Environmental Microbiology, 2021, 23, 4017-4033.	3.8	10
25	Metagenome Assembled Genome of a Novel Verrucomicrobial Methanotroph From Pantelleria Island. Frontiers in Microbiology, 2021, 12, 666929.	3.5	13
26	Simultaneous Anaerobic and Aerobic Ammonia and Methane Oxidation under Oxygen Limitation Conditions. Applied and Environmental Microbiology, 2021, 87, e0004321.	3.1	3
27	Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. ISME Journal, 2021, 15, 3549-3565.	9.8	30
28	Effect of concentration and hydraulic reaction time on the removal of pharmaceutical compounds in a membrane bioreactor inoculated with activated sludge. Microbial Biotechnology, 2021, 14, 1707-1721.	4.2	16
29	Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nature Microbiology, 2021, 6, 1129-1139.	13.3	25
30	Do initial concentration and activated sludge seasonality affect pharmaceutical biotransformation rate constants? Applied Microbiology and Biotechnology, 2021, 105, 6515-6527.	3.6	11
31	Proteogenomic analysis of <i>Georgfuchsia toluolica</i> revealed unexpected concurrent aerobic and anaerobic toluene degradation. Environmental Microbiology Reports, 2021, 13, 841-851.	2.4	3
32	Investigating the Chemolithoautotrophic and Formate Metabolism of Nitrospira moscoviensis by Constraint-Based Metabolic Modeling and ¹³ C-Tracer Analysis. MSystems, 2021, 6, e0017321.	3.8	8
33	Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. MBio, 2021, 12, e0170821.	4.1	9
34	Effects of a longâ€term anoxic warming scenario on microbial community structure and functional potential of permafrostâ€affected soil. Permafrost and Periglacial Processes, 2021, 32, 641-656.	3.4	11
35	Current production by non-methanotrophic bacteria enriched from an anaerobic methane-oxidizing microbial community. Biofilm, 2021, 3, 100054.	3.8	8
36	Characterization of a nitrite-reducing octaheme hydroxylamine oxidoreductase that lacks the tyrosine cross-link. Journal of Biological Chemistry, 2021, 296, 100476.	3.4	16

#	Article	IF	CITATIONS
37	Microbial activity, methane production, and carbon storage in Early Holocene North Sea peats. Biogeosciences, 2021, 18, 5491-5511.	3.3	3
38	Authors need to be prudent when assigning names to microbial isolates. Archives of Microbiology, 2021, 203, 5845-5848.	2.2	6
39	Authors Need to be Prudent When Assigning Names to Microbial Isolates. Current Microbiology, 2021, 78, 4005-4008.	2.2	4
40	The Polygonal Cell Shape and Surface Protein Layer of Anaerobic Methane-Oxidizing Methylomirabilislanthanidiphila Bacteria. Frontiers in Microbiology, 2021, 12, 766527.	3.5	2
41	Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world. ISME Journal, 2020, 14, 151-163.	9.8	54
42	Three marine strains constitute the novel genus and species Crateriforma conspicua in the phylum Planctomycetes. Antonie Van Leeuwenhoek, 2020, 113, 1797-1809.	1.7	35
43	Blastopirellula retiformator sp. nov. isolated from the shallow-sea hydrothermal vent system close to Panarea Island. Antonie Van Leeuwenhoek, 2020, 113, 1811-1822.	1.7	29
44	Description of the novel planctomycetal genus Bremerella, containing Bremerella volcania sp. nov., isolated from an active volcanic site, and reclassification of Blastopirellula cremea as Bremerella cremea comb. nov Antonie Van Leeuwenhoek, 2020, 113, 1823-1837.	1.7	36
45	Description of three bacterial strains belonging to the new genus Novipirellula gen. nov., reclassificiation of Rhodopirellula rosea and Rhodopirellula caenicola and readjustment of the genus threshold of the phylogenetic marker rpoB for Planctomycetaceae. Antonie Van Leeuwenhoek, 2020. 113. 1779-1795.	1.7	56
46	Microbial community composition and functional potential in Bothnian Sea sediments is linked to Fe and S dynamics and the quality of organic matter. Limnology and Oceanography, 2020, 65, S113.	3.1	22
47	Rhodopirellula heiligendammensis sp. nov., Rhodopirellula pilleata sp. nov., and Rhodopirellula solitaria sp. nov. isolated from natural or artificial marine surfaces in Northern Germany and California, USA, and emended description of the genus Rhodopirellula. Antonie Van Leeuwenhoek, 2020, 113, 1737-1750.	1.7	35
48	Alienimonas californiensis gen. nov. sp. nov., a novel Planctomycete isolated from the kelp forest in Monterey Bay. Antonie Van Leeuwenhoek, 2020, 113, 1751-1766.	1.7	40
49	Three novel Rubripirellula species isolated from plastic particles submerged in the Baltic Sea and the estuary of the river Warnow in northern Germany. Antonie Van Leeuwenhoek, 2020, 113, 1767-1778.	1.7	41
50	Rubinisphaera italica sp. nov. isolated from a hydrothermal area in the Tyrrhenian Sea close to the volcanic island Panarea. Antonie Van Leeuwenhoek, 2020, 113, 1727-1736.	1.7	38
51	Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nature Microbiology, 2020, 5, 126-140.	13.3	164
52	Metagenomic profiling of ammonia- and methane-oxidizing microorganisms in two sequential rapid sand filters. Water Research, 2020, 185, 116288.	11.3	52
53	The role of mobile genetic elements in organic micropollutant degradation during biological wastewater treatment. Water Research X, 2020, 9, 100065.	6.1	29
54	Caulifigura coniformis gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from a red biofilm sampled in a hydrothermal area. Antonie Van Leeuwenhoek, 2020, 113, 1927-1937.	1.7	15

#	Article	IF	CITATIONS
55	Rosistilla oblonga gen. nov., sp. nov. and Rosistilla carotiformis sp. nov., isolated from biotic or abiotic surfaces in Northern Germany, Mallorca, Spain and California, USA. Antonie Van Leeuwenhoek, 2020, 113, 1939-1952.	1.7	20
56	Updates to the recently introduced family Lacipirellulaceae in the phylum Planctomycetes: isolation of strains belonging to the novel genera Aeoliella, Botrimarina, Pirellulimonas and Pseudobythopirellula and the novel species Bythopirellula polymerisocia and Posidoniimonas corsicana. Antonie Van Leeuwenhoek, 2020, 113, 1979-1997.	1.7	47
57	Arsenic mobilization by anaerobic iron-dependent methane oxidation. Communications Earth & Environment, 2020, 1 , .	6.8	22
58	Nutrient Limitation Causes Differential Expression of Transport- and Metabolism Genes in the Compartmentalized Anammox Bacterium Kuenenia stuttgartiensis. Frontiers in Microbiology, 2020, 11, 1959.	3.5	14
59	Larger Anammox Granules not only Harbor Higher Species Diversity but also Support More Functional Diversity. Environmental Science & Echnology, 2020, 54, 14664-14673.	10.0	34
60	Long-term enriched methanogenic communities from thermokarst lake sediments show species-specific responses to warming. FEMS Microbes, 2020, 1 , .	2.1	7
61	Three Planctomycetes isolated from biotic surfaces in the Mediterranean Sea and the Pacific Ocean constitute the novel species Symmachiella dynata gen. nov., sp. nov. and Symmachiella macrocystis sp. nov Antonie Van Leeuwenhoek, 2020, 113, 1965-1977.	1.7	20
62	Multiheme hydroxylamine oxidoreductases produce NO during ammonia oxidation in methanotrophs. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24459-24463.	7.1	25
63	Stieleria varia sp. nov., isolated from wood particles in the Baltic Sea, constitutes a novel species in the family Pirellulaceae within the phylum Planctomycetes. Antonie Van Leeuwenhoek, 2020, 113, 1953-1963.	1.7	14
64	Cultivation-Independent Analysis of the Bacterial Community Associated With the Calcareous Sponge Clathrina clathrus and Isolation of Poriferisphaera corsica Gen. Nov., Sp. Nov., Belonging to the Barely Studied Class Phycisphaerae in the Phylum Planctomycetes. Frontiers in Microbiology, 2020, 11, 602250.	3 . 5	23
65	More Than a Methanotroph: A Broader Substrate Spectrum for Methylacidiphilum fumariolicum SolV. Frontiers in Microbiology, 2020, 11, 604485.	3.5	20
66	Additions to the genus Gimesia: description of Gimesia alba sp. nov., Gimesia algae sp. nov., Gimesia aquarii sp. nov., Gimesia aquatilis sp. nov., Gimesia fumaroli sp. nov. and Gimesia panareensis sp. nov., isolated from aquatic habitats of the Northern Hemisphere. Antonie Van Leeuwenhoek, 2020, 113, 1999-2018.	1.7	41
67	Geothermal Gases Shape the Microbial Community of the Volcanic Soil of Pantelleria, Italy. MSystems, 2020, 5, .	3.8	13
68	Transcriptomics Uncovers the Response of Anammox Bacteria to Dissolved Oxygen Inhibition and the Subsequent Recovery Mechanism. Environmental Science & Environmental Science & 2020, 54, 14674-14685.	10.0	40
69	Hydrogen and Carbon Monoxide-Utilizing Kyrpidia spormannii Species From Pantelleria Island, Italy. Frontiers in Microbiology, 2020, 11, 951.	3.5	18
70	Calycomorphotria hydatis gen. nov., sp. nov., a novel species in the family Planctomycetaceae with conspicuous subcellular structures. Antonie Van Leeuwenhoek, 2020, 113, 1877-1887.	1.7	17
71	Tautonia plasticadhaerens sp. nov., a novel species in the family Isosphaeraceae isolated from an alga in a hydrothermal area of the Eolian Archipelago. Antonie Van Leeuwenhoek, 2020, 113, 1889-1900.	1.7	19
72	Nanoarchitectured structure and population dynamics of anaerobic ammonium oxidizing (anammox) bacteria in a wastewater treatment plant. Journal of Hazardous Materials, 2020, 396, 122714.	12.4	14

#	Article	IF	Citations
73	Changes in microbial community composition, activity, and greenhouse gas production upon inundation of drained iron-rich peat soils. Soil Biology and Biochemistry, 2020, 149, 107862.	8.8	12
74	Diversity, enrichment, and genomic potential of anaerobic methane- and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant. Applied Microbiology and Biotechnology, 2020, 104, 7201-7212.	3.6	9
75	Thalassoglobus polymorphus sp. nov., a novel Planctomycete isolated close to a public beach of Mallorca Island. Antonie Van Leeuwenhoek, 2020, 113, 1915-1926.	1.7	15
76	Maioricimonas rarisocia gen. nov., sp. nov., a novel planctomycete isolated from marine sediments close to Mallorca Island. Antonie Van Leeuwenhoek, 2020, 113, 1901-1913.	1.7	17
77	The Microbiome of Posidonia oceanica Seagrass Leaves Can Be Dominated by Planctomycetes. Frontiers in Microbiology, 2020, 11, 1458.	3.5	40
78	The thermoacidophilic methanotroph <i>Methylacidiphilum fumariolicum</i> SolV oxidizes subatmospheric H2 with a high-affinity, membrane-associated [NiFe] hydrogenase. ISME Journal, 2020, 14, 1223-1232.	9.8	47
79	A unique bacteriohopanetetrol stereoisomer of marine anammox. Organic Geochemistry, 2020, 143, 103994.	1.8	18
80	Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria. Nature Communications, 2020, 11 , 2058.	12.8	168
81	Aureliella helgolandensis gen. nov., sp. nov., a novel Planctomycete isolated from a jellyfish at the shore of the island Helgoland. Antonie Van Leeuwenhoek, 2020, 113, 1839-1849.	1.7	19
82	Description of Polystyrenella longa gen. nov., sp. nov., isolated from polystyrene particles incubated in the Baltic Sea. Antonie Van Leeuwenhoek, 2020, 113, 1851-1862.	1.7	14
83	Lignipirellula cremea gen. nov., sp. nov., a planctomycete isolated from wood particles in a brackish river estuary. Antonie Van Leeuwenhoek, 2020, 113, 1863-1875.	1.7	15
84	Draft Genome Sequences of Two Acidophilic, Mesophilic Verrucomicrobial Methanotrophs Contain Only One pmoCAB Operon. Microbiology Resource Announcements, 2020, 9, .	0.6	1
85	Microbial nitrogen fixation and methane oxidation are strongly enhanced by light in Sphagnum mosses. AMB Express, 2020, 10, 61.	3.0	16
86	Draft Genome Sequence of a New <i>Methanobacterium</i> Strain Potentially Resistant to Bile Salts, Isolated from Deer Feces. Microbiology Resource Announcements, 2020, 9, .	0.6	0
87	Complexome analysis of the nitrite-dependent methanotroph Methylomirabilis lanthanidiphila. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 734-744.	1.0	18
88	Demethylated hopanoids in †Ca. Methylomirabilis oxyfera' as biomarkers for environmental nitrite-dependent methane oxidation. Organic Geochemistry, 2019, 137, 103899.	1.8	7
89	A nitric oxide–binding heterodimeric cytochrome c complex from the anammox bacterium Kuenenia stuttgartiensis binds to hydrazine synthase. Journal of Biological Chemistry, 2019, 294, 16712-16728.	3.4	16
90	The Acidophilic Methanotroph Methylacidimicrobium tartarophylax 4AC Grows as Autotroph on H2 Under Microoxic Conditions. Frontiers in Microbiology, 2019, 10, 2352.	3.5	28

#	Article	IF	Citations
91	Metabolic Overlap in Environmentally Diverse Microbial Communities. Frontiers in Genetics, 2019, 10, 989.	2.3	33
92	Interactions of anaerobic ammonium oxidizers and sulfide-oxidizing bacteria in a substrate-limited model system mimicking the marine environment. FEMS Microbiology Ecology, 2019, 95, .	2.7	11
93	High-Level Abundances of <i>Methanobacteriales </i> Prevent Corrosion of Metal Sheet Piles. Applied and Environmental Microbiology, 2019, 85, .	3.1	14
94	Interactions between anaerobic ammonium- and methane-oxidizing microorganisms in a laboratory-scale sequencing batch reactor. Applied Microbiology and Biotechnology, 2019, 103, 6783-6795.	3.6	26
95	<i>Methylotetracoccus oryzae</i> Strain C50C1 Is a Novel Type Ib Gammaproteobacterial Methanotroph Adapted to Freshwater Environments. MSphere, 2019, 4, .	2.9	14
96	Complete Genome Sequence of the Aerobic Facultative Methanotroph Methylocella tundrae Strain T4. Microbiology Resource Announcements, 2019, 8, .	0.6	5
97	Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea. FEMS Microbiology Ecology, 2019, 95, .	2.7	28
98	Cultivation and Transcriptional Analysis of a Canonical Nitrospira Under Stable Growth Conditions. Frontiers in Microbiology, 2019, 10, 1325.	3.5	34
99	Metagenomic recovery of two distinct comammox <i>Nitrospira</i> from the terrestrial subsurface. Environmental Microbiology, 2019, 21, 3627-3637.	3.8	69
100	A 192-heme electron transfer network in the hydrazine dehydrogenase complex. Science Advances, 2019, 5, eaav4310.	10.3	47
101	Nitric oxide-dependent anaerobic ammonium oxidation. Nature Communications, 2019, 10, 1244.	12.8	103
102	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
103	In Situ Quantification of Biological N ₂ Production Using Naturally Occurring ¹⁵ N ¹⁵ N. Environmental Science & Environm	10.0	14
104	Characterization of a novel cytochrome c as the electron acceptor of XoxF-MDH in the thermoacidophilic methanotroph Methylacidiphilum fumariolicum SolV. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 595-603.	2.3	25
105	Key Physiology of a Nitrite-Dependent Methane-Oxidizing Enrichment Culture. Applied and Environmental Microbiology, 2019, 85, .	3.1	39
106	A 60-heme reductase complex from an anammox bacterium shows an extended electron transfer pathway. Acta Crystallographica Section D: Structural Biology, 2019, 75, 333-341.	2.3	7
107	Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM). Global Biogeochemical Cycles, 2019, 33, 1715-1732.	4.9	27
108	Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. Environmental Pollution, 2019, 244, 228-237.	7.5	53

#	Article	IF	CITATIONS
109	Resuscitation of anammox bacteria after & amp; gt; 10,000 years of dormancy. ISME Journal, 2019, 13, 1098-1109.	9.8	51
110	Current perspectives on the application of N-damo and anammox in wastewater treatment. Current Opinion in Biotechnology, 2018, 50, 222-227.	6.6	88
111	The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiology Ecology, 2018, 94, .	2.7	28
112	Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics, 2018, 56, 207-250.	23.0	354
113	Characterization of the first planctomycetal outer membrane protein identifies a channel in the outer membrane of the anammox bacterium Kuenenia stuttgartiensis. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 767-776.	2.6	9
114	Signaling ammonium across membranes through an ammonium sensor histidine kinase. Nature Communications, 2018, 9, 164.	12.8	36
115	Co-cultivation of the strictly anaerobic methanogen Methanosarcina barkeri with aerobic methanotrophs in an oxygen-limited membrane bioreactor. Applied Microbiology and Biotechnology, 2018, 102, 5685-5694.	3.6	16
116	Editorial overview: Microbial environmental biotechnology. Current Opinion in Biotechnology, 2018, 50, vii-ix.	6.6	0
117	Resolving the complete genome of Kuenenia stuttgartiensis from a membrane bioreactor enrichment using Single-Molecule Real-Time sequencing. Scientific Reports, 2018, 8, 4580.	3.3	48
118	Microbial pathways for nitrogen loss in an upland soil. Environmental Microbiology, 2018, 20, 1723-1738.	3.8	76
119	Nutrient and acetate amendment leads to acetoclastic methane production and microbial community change in a nonâ€producing Australian coal well. Microbial Biotechnology, 2018, 11, 626-638.	4.2	30
120	Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture. Applied and Environmental Microbiology, 2018, 84, .	3.1	28
121	Response of the Anaerobic Methanotroph " <i>Candidatus</i> Methanoperedens nitroreducens―to Oxygen Stress. Applied and Environmental Microbiology, 2018, 84, .	3.1	42
122	Increases in temperature and nutrient availability positively affect methane ycling microorganisms in Arctic thermokarst lake sediments. Environmental Microbiology, 2018, 20, 4314-4327.	3.8	51
123	Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities. MSystems, 2018, 3, .	3.8	56
124	The influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses. AMB Express, 2018, 8, 76.	3.0	16
125	Fortune favours the wellâ€read audience, authors and editors of environmental microbiology. Environmental Microbiology, 2018, 20, 1947-1948.	3.8	0
126	Comparative Genomics of Candidatus Methylomirabilis Species and Description of Ca. Methylomirabilis Lanthanidiphila. Frontiers in Microbiology, 2018, 9, 1672.	3.5	67

#	Article	lF	CITATIONS
127	Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifer soils. Scientific Reports, 2017, 7, 40173.	3.3	31
128	McrA primers for the detection and quantification of the anaerobic archaeal methanotroph †Candidatus Methanoperedens nitroreducens'. Applied Microbiology and Biotechnology, 2017, 101, 1631-1641.	3.6	65
129	Draft Genome of Scalindua rubra, Obtained from the Interface Above the Discovery Deep Brine in the Red Sea, Sheds Light on Potential Salt Adaptation Strategies in Anammox Bacteria. Microbial Ecology, 2017, 74, 1-5.	2.8	73
130	Metagenomic potential for and diversity of Nâ€cycle driving microorganisms in the Bothnian Sea sediment. MicrobiologyOpen, 2017, 6, e00475.	3.0	43
131	Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Current Opinion in Chemical Biology, 2017, 37, 129-136.	6.1	113
132	Whole-Community Metagenomics in Two Different Anammox Configurations: Process Performance and Community Structure. Environmental Science & Environmental Science & 2017, 51, 4317-4327.	10.0	98
133	<i>Methylacidiphilum fumariolicum</i> SolV, a thermoacidophilic â€~Knallgas' methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME Journal, 2017, 11, 945-958.	9.8	80
134	Enrichment of anaerobic nitrate-dependent methanotrophic â€ [~] Candidatus Methanoperedens nitroreducensâ€ [™] archaea from an Italian paddy field soil. Applied Microbiology and Biotechnology, 2017, 101, 7075-7084.	3.6	110
135	Mimicking microbial interactions under nitrateâ€reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to ⟨i⟩Thermodesulfovibrio⟨ i⟩. Environmental Microbiology, 2017, 19, 4965-4977.	3.8	60
136	Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. AMB Express, 2017, 7, 162.	3.0	24
137	AmoA-Targeted Polymerase Chain Reaction Primers for the Specific Detection and Quantification of Comammox Nitrospira in the Environment. Frontiers in Microbiology, 2017, 8, 1508.	3.5	313
138	Ammonia Oxidation and Nitrite Reduction in the Verrucomicrobial Methanotroph Methylacidiphilum fumariolicum SolV. Frontiers in Microbiology, 2017, 8, 1901.	3.5	45
139	Stratification of Diversity and Activity of Methanogenic and Methanotrophic Microorganisms in a Nitrogen-Fertilized Italian Paddy Soil. Frontiers in Microbiology, 2017, 8, 2127.	3.5	62
140	Reverse Methanogenesis and Respiration in Methanotrophic Archaea. Archaea, 2017, 2017, 1-22.	2.3	240
141	High-Quality Draft Genome Sequence of " <i>Candidatus</i> Methanoperedens sp.―Strain BLZ2, a Nitrate-Reducing Anaerobic Methane-Oxidizing Archaeon Enriched in an Anoxic Bioreactor. Genome Announcements, 2017, 5, .	0.8	22
142	Symbiosis revisited: phosphorus and acid buffering stimulate N& t;sub>2& t;/sub> fixation but not & t;i>Sphagnum& t;/i> growth. Biogeosciences, 2017, 14, 1111-1122.	3.3	18
143	Draft Genome Sequences of Two Gammaproteobacterial Methanotrophs Isolated from Rice Ecosystems. Genome Announcements, 2017, 5, .	0.8	8
144	Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. PeerJ, 2016, 4, e1924.	2.0	77

#	Article	IF	Citations
145	The S-Layer Protein of the Anammox Bacterium Kuenenia stuttgartiensis Is Heavily O-Glycosylated. Frontiers in Microbiology, 2016, 7, 1721.	3.5	19
146	Ultrastructure and Viral Metagenome of Bacteriophages from an Anaerobic Methane Oxidizing Methylomirabilis Bioreactor Enrichment Culture. Frontiers in Microbiology, 2016, 7, 1740.	3.5	13
147	Plasmids from the gut microbiome of cabbage root fly larvae encode ⟨scp⟩SaxA⟨lscp⟩ that catalyses the conversion of the plant toxin 2â€phenylethyl isothiocyanate. Environmental Microbiology, 2016, 18, 1379-1390.	3.8	83
148	Branchial nitrogen cycle symbionts can remove ammonia in fish gills. Environmental Microbiology Reports, 2016, 8, 590-594.	2.4	34
149	Metagenomic analysis of anammox communities in three different microbial aggregates. Environmental Microbiology, 2016, 18, 2979-2993.	3.8	133
150	Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems. Genome Announcements, $2016, 4, .$	0.8	23
151	SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria. Applied and Environmental Microbiology, 2016, 82, 2372-2379.	3.1	38
152	Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with Sphagnum magellanicum. Plant and Soil, 2016, 406, 83-100.	3.7	44
153	Methane dependent denitrification- from ecosystem to laboratory-scale enrichment for engineering applications. Water Research, 2016, 99, 244-252.	11.3	55
154	Membrane-bound electron transport systems of an anammox bacterium: A complexome analysis. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1694-1704.	1.0	89
155	Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nature Communications, 2016, 7, 11172.	12.8	373
156	Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12792-12796.	7.1	470
157	A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Scientific Reports, 2016, 6, 32241.	3.3	74
158	Nitrate―and nitriteâ€dependent anaerobic oxidation of methane. Environmental Microbiology Reports, 2016, 8, 941-955.	2.4	150
159	Characterization of Anammox Hydrazine Dehydrogenase, a Key N2-producing Enzyme in the Global Nitrogen Cycle. Journal of Biological Chemistry, 2016, 291, 17077-17092.	3.4	103
160	Removing nitrogen from wastewater with side stream anammox: What are the trade-offs between environmental impacts?. Resources, Conservation and Recycling, 2016, 107, 212-219.	10.8	62
161	Ubiquitous anaerobic ammonium oxidation in inland waters of China: an overlooked nitrous oxide mitigation process. Scientific Reports, 2015, 5, 17306.	3.3	47
162	A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea. Frontiers in Microbiology, 2015, 6, 1423.	3.5	170

#	Article	IF	CITATIONS
163	Draft Genomes of Gammaproteobacterial Methanotrophs Isolated from Terrestrial Ecosystems. Genome Announcements, 2015, 3, .	0.8	41
164	The Nitrogen Cycle. , 2015, , 205-214.		8
165	Draft Genome Sequence of Anammox Bacterium "Candidatus Scalindua brodae,―Obtained Using Differential Coverage Binning of Sequencing Data from Two Reactor Enrichments. Genome Announcements, 2015, 3, .	0.8	46
166	XoxF-Type Methanol Dehydrogenase from the Anaerobic Methanotroph "Candidatus Methylomirabilis oxyfera― Applied and Environmental Microbiology, 2015, 81, 1442-1451.	3.1	75
167	Nitrogen transforming community in a horizontal subsurface-flow constructed wetland. Water Research, 2015, 74, 203-212.	11.3	104
168	Metal Enzymes in "Impossible―Microorganisms Catalyzing the Anaerobic Oxidation of Ammonium and Methane. Metal Ions in Life Sciences, 2015, 15, 257-313.	2.8	16
169	Immunogold Localization of Key Metabolic Enzymes in the Anammoxosome and on the Tubule-Like Structures of Kuenenia stuttgartiensis. Journal of Bacteriology, 2015, 197, 2432-2441.	2.2	52
170	Fortunate those that are starting now. Environmental Microbiology Reports, 2015, 7, 23-25.	2.4	0
171	Draft Genome Sequence of the Moderately Halophilic Methanotroph Methylohalobius crimeensis Strain 10Ki. Genome Announcements, $2015, 3, \ldots$	0.8	14
172	The inner workings of the hydrazine synthase multiprotein complex. Nature, 2015, 527, 394-397.	27.8	131
173	Complete nitrification by a single microorganism. Nature, 2015, 528, 555-559.	27.8	1,336
174	Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in <scp>C</scp> hinese wetland ecosystems. Environmental Microbiology Reports, 2015, 7, 128-138.	2.4	75
175	Iron-Mediated Anaerobic Oxidation of Methane in Brackish Coastal Sediments. Environmental Science & Environmental Science	10.0	230
176	Shotgun metagenomic data reveals significant abundance but low diversity of "Candidatus Scalindua― marine anammox bacteria in the Arabian Sea oxygen minimum zone. Frontiers in Microbiology, 2014, 5, 31.	3.5	41
177	Isolation and characterization of a prokaryotic cell organelle from the anammox bacterium <scp><i>K</i></scp> <i>uenenia stuttgartiensisMolecular Microbiology, 2014, 94, 794-802.</i>	2.5	72
178	Structural Basis of Biological NO Generation by Octaheme Oxidoreductases. Journal of Biological Chemistry, 2014, 289, 1228-1242.	3.4	87
179	Interactions between anaerobic ammonium and sulfurâ€oxidizing bacteria in a laboratory scale model system. Environmental Microbiology, 2014, 16, 3487-3498.	3.8	81
180	Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environmental Microbiology, 2014, 16, 255-264.	3.8	433

#	Article	IF	Citations
181	A New Addition to the Cell Plan of Anammox Bacteria: "Candidatus Kuenenia stuttgartiensis" Has a Protein Surface Layer as the Outermost Layer of the Cell. Journal of Bacteriology, 2014, 196, 80-89.	2.2	50
182	Expanding the Verrucomicrobial Methanotrophic World: Description of Three Novel Species of Methylacidimicrobium gen. nov. Applied and Environmental Microbiology, 2014, 80, 6782-6791.	3.1	161
183	Autotrophic Carbon Dioxide Fixation via the Calvin-Benson-Bassham Cycle by the Denitrifying Methanotroph "Candidatus Methylomirabilis oxyfera― Applied and Environmental Microbiology, 2014, 80, 2451-2460.	3.1	105
184	Simultaneous partial nitritation and anammox at low temperature with granular sludge. Water Research, 2014, 66, 111-121.	11.3	244
185	Anaerobic ammonium-oxidising bacteria: A biological source of the bacteriohopanetetrol stereoisomer in marine sediments. Geochimica Et Cosmochimica Acta, 2014, 140, 50-64.	3.9	49
186	Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor. Frontiers in Microbiology, 2014, 5, 28.	3.5	76
187	Faster autotrophic growth of anaerobic ammonium-oxidizing microorganisms in presence of nitrite, using inocula from Colombia. Revista Colombiana De BiotecnologÃa, 2014, 16, 146.	0.2	2
188	The metagenome of the marine anammox bacterium <i>Candidatus</i> Scalindua profunda' illustrates the versatility of this globally important nitrogen cycle bacterium. Environmental Microbiology, 2013, 15, 1275-1289.	3.8	246
189	Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces. Nature Geoscience, 2013, 6, 103-107.	12.9	260
190	Anammox bacterial populations in deep marine hypersaline gradient systems. Extremophiles, 2013, 17, 289-299.	2.3	41
191	Lysozyme and Penicillin Inhibit the Growth of Anaerobic Ammonium-Oxidizing Planctomycetes. Applied and Environmental Microbiology, 2013, 79, 7763-7769.	3.1	39
192	Nitrogen isotope effects induced by anammox bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18994-18999.	7.1	174
193	Identification of the type II cytochrome cmaturation pathway in anammox bacteria by comparative genomics. BMC Microbiology, 2013, 13, 265.	3.3	23
194	How to make a living from anaerobic ammonium oxidation. FEMS Microbiology Reviews, 2013, 37, 428-461.	8.6	433
195	Evidence that the catenane form of CS2 hydrolase is not an artefact. Chemical Communications, 2013, 49, 7770.	4.1	29
196	Differences in sequencing technologies improve the retrieval of anammox bacterial genome from metagenomes. BMC Genomics, 2013, 14, 7.	2.8	25
197	Enrichment of an anammox bacterial community from a flooded paddy soil. Environmental Microbiology Reports, 2013, 5, 483-489.	2.4	41
198	Draft Genome Sequence of Methylomicrobium buryatense Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium. Genome Announcements, 2013, 1 , .	0.8	36

#	Article	IF	Citations
199	Genome Sequence of the Obligate Gammaproteobacterial Methanotroph Methylomicrobium album Strain BG8. Genome Announcements, 2013, 1, e0017013.	0.8	23
200	Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin. Frontiers in Microbiology, 2013, 4, 219.	3.5	41
201	Nitrogen Removal by a Nitritation-Anammox Bioreactor at Low Temperature. Applied and Environmental Microbiology, 2013, 79, 2807-2812.	3.1	258
202	Diversity and Ecophysiology of New Isolates of Extremely Acidophilic CS ₂ -Converting Acidithiobacillus Strains. Applied and Environmental Microbiology, 2013, 79, 6784-6794.	3.1	8
203	Bacterial CS2 Hydrolases from Acidithiobacillus thiooxidans Strains Are Homologous to the Archaeal Catenane CS2 Hydrolase. Journal of Bacteriology, 2013, 195, 4046-4056.	2.2	27
204	A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water. Frontiers in Microbiology, 2013, 4, 60.	3.5	30
205	Draft Genome Sequence of the Volcano-Inhabiting Thermoacidophilic Methanotroph Methylacidiphilum fumariolicum Strain SolV. Journal of Bacteriology, 2012, 194, 3729-3730.	2.2	43
206	Rapid and Simple Cryopreservation of Anaerobic Ammonium-Oxidizing Bacteria. Applied and Environmental Microbiology, 2012, 78, 3010-3013.	3.1	42
207	Effects of Nitrogen Dioxide and Anoxia on Global Gene and Protein Expression in Long-Term Continuous Cultures of Nitrosomonas eutropha C91. Applied and Environmental Microbiology, 2012, 78, 4788-4794.	3.1	15
208	Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria. Applied and Environmental Microbiology, 2012, 78, 8657-8665.	3.1	183
209	Rare Branched Fatty Acids Characterize the Lipid Composition of the Intra-Aerobic Methane Oxidizer "Candidatus Methylomirabilis oxyfera― Applied and Environmental Microbiology, 2012, 78, 8650-8656.	3.1	31
210	Extremely acidophilic sulfur-oxidizing bacteria applied in biotechnological processes for gas purification. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2012, 47, 964-969.	1.7	4
211	Hydrazine Synthase, a Unique Phylomarker with Which To Study the Presence and Biodiversity of Anammox Bacteria. Applied and Environmental Microbiology, 2012, 78, 752-758.	3.1	228
212	Anaerobic Ammonium-Oxidizing Bacteria: Unique Microorganisms with Exceptional Properties. Microbiology and Molecular Biology Reviews, 2012, 76, 585-596.	6.6	220
213	Ultrastructure of the Denitrifying Methanotroph "Candidatus Methylomirabilis oxyfera,―a Novel Polygon-Shaped Bacterium. Journal of Bacteriology, 2012, 194, 284-291.	2.2	56
214	Anoxic Iron Cycling Bacteria from an Iron Sulfide- and Nitrate-Rich Freshwater Environment. Frontiers in Microbiology, 2012, 3, 26.	3.5	23
215	Metagenome Analysis of a Complex Community Reveals the Metabolic Blueprint of Anammox Bacterium "Candidatus Jettenia asiatica― Frontiers in Microbiology, 2012, 3, 366.	3.5	86
216	Microbial Transformations of Nitrogen, Sulfur, and Iron Dictate Vegetation Composition in Wetlands: A Review. Frontiers in Microbiology, 2012, 3, 156.	3.5	100

#	Article	IF	Citations
217	Genomic Analysis Indicates the Presence of an Asymmetric Bilayer Outer Membrane in Planctomycetes and Verrucomicrobia. Frontiers in Microbiology, 2012, 3, 304.	3.5	51
218	The metagenomic basis of anammox metabolism in Candidatus †Brocadia fulgida†M. Biochemical Society Transactions, 2012, 40, 295-295.	3.4	2
219	Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil. FEMS Microbiology Letters, 2012, 336, 79-88.	1.8	201
220	Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z. Journal of Bacteriology, 2012, 194, 551-552.	2.2	72
221	Anammoxâ€"Growth Physiology, Cell Biology, and Metabolism. Advances in Microbial Physiology, 2012, 60, 211-262.	2.4	175
222	Mimicking the oxygen minimum zones: stimulating interaction of aerobic archaeal and anaerobic bacterial ammonia oxidizers in a laboratoryâ€scale model system. Environmental Microbiology, 2012, 14, 3146-3158.	3.8	100
223	Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment. Journal of Hazardous Materials, 2012, 227-228, 164-171.	12.4	110
224	Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss. Geochimica Et Cosmochimica Acta, 2012, 77, 52-61.	3.9	83
225	Carbon and hydrogen isotope fractionation during nitrite-dependent anaerobic methane oxidation by Methylomirabilis oxyfera. Geochimica Et Cosmochimica Acta, 2012, 89, 256-264.	3.9	46
226	Anammox Bacterial Abundance, Activity, and Contribution in Riparian Sediments of the Pearl River Estuary. Environmental Science & Estuary. Estuary. Environmental Science & Estuary. Environmental Sci	10.0	175
227	Comparative Genomics of Two Independently Enriched "Candidatus Kuenenia Stuttgartiensis― Anammox Bacteria. Frontiers in Microbiology, 2012, 3, 307.	3.5	51
228	Genome analysis and heterologous expression of acetate-activating enzymes in the anammox bacterium Kuenenia stuttgartiensis. Archives of Microbiology, 2012, 194, 943-948.	2.2	23
229	Metabolic Regulation of "Ca. Methylacidiphilum Fumariolicum―SolV Cells Grown Under Different Nitrogen and Oxygen Limitations. Frontiers in Microbiology, 2012, 3, 266.	3.5	35
230	Bacterial oxygen production in the dark. Frontiers in Microbiology, 2012, 3, 273.	3.5	119
231	Genomic and Physiological Analysis of Carbon Storage in the Verrucomicrobial Methanotroph "Ca. Methylacidiphilum Fumariolicum―SolV. Frontiers in Microbiology, 2012, 3, 345.	3.5	61
232	Metabolic modeling of denitrification in Agrobacterium tumefaciens: a tool to study inhibiting and activating compounds for the denitrification pathway. Frontiers in Microbiology, 2012, 3, 370.	3.5	17
233	Methanotrophic activity and diversity in different & amp;lt;i& amp;gt;Sphagnum magellanicum & amp;lt;/i& amp;gt; dominated habitats in the southernmost peat bogs of Patagonia. Biogeosciences, 2012, 9, 47-55.	3.3	63
234	Co-localization of particulate methane monooxygenase and cd1 nitrite reductase in the denitrifying methanotroph †Candidatus Methylomirabilis oxyfera'. FEMS Microbiology Letters, 2012, 334, 49-56.	1.8	27

#	Article	IF	Citations
235	Effect of oxygen on the anaerobic methanotroph â€~ <i>Candidatus</i> Methylomirabilis oxyfera': kinetic and transcriptional analysis. Environmental Microbiology, 2012, 14, 1024-1034.	3.8	142
236	FACIL: Fast and Accurate Genetic Code Inference and Logo. Bioinformatics, 2011, 27, 1929-1933.	4.1	42
237	Genomic signatures for metagenomic data analysis: Exploiting the reverse complementarity of tetranucleotides. , $2011, , .$		4
238	Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon. Nature, 2011, 478, 412-416.	27.8	91
239	<i>pmoA</i> Primers for Detection of Anaerobic Methanotrophs. Applied and Environmental Microbiology, 2011, 77, 3877-3880.	3.1	145
240	A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium <i>Candidatus</i> â€~Methylomirabilis oxyfera'. Biochemical Society Transactions, 2011, 39, 243-248.	3.4	153
241	Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479, 127-130.	27.8	707
242	Anammox Bacterial Abundance, Biodiversity and Activity in a Constructed Wetland. Environmental Science & Environmental Science	10.0	124
243	A multiâ€proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden. Environmental Microbiology Reports, 2011, 3, 360-366.	2.4	63
244	The metagenomic basis of anammox metabolism in <i>Candidatus</i> â€~Brocadia fulgida'. Biochemical Society Transactions, 2011, 39, 1799-1804.	3.4	110
245	<i>De novo</i> transcriptome characterization and development of genomic tools for <i>Scabiosa columbaria</i> L. using nextâ€generation sequencing techniques. Molecular Ecology Resources, 2011, 11, 662-674.	4.8	44
246	A novel family of functional operons encoding methane/ammonia monooxygenaseâ€related proteins in gammaproteobacterial methanotrophs. Environmental Microbiology Reports, 2011, 3, 91-100.	2.4	149
247	Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. Environmental Microbiology Reports, 2011, 3, 667-673.	2.4	58
248	The role of endophytic methane-oxidizing bacteria in submerged & amp;lt;l>Sphagnum in determining methane emissions of Northeastern Siberian tundra. Biogeosciences, 2011, 8, 1267-1278.	3.3	46
249	Combined anaerobic ammonium and methane oxidation for nitrogen and methane removal. Biochemical Society Transactions, 2011, 39, 1822-1825.	3.4	54
250	Decreased N $<$ sub $>$ 2 $<$ /sub $>$ 0 reduction by low soil pH causes high N $<$ sub $>$ 2 $<$ /sub $>$ 0 emissions in a riparian ecosystem. Geobiology, 2011, 9, 294-300.	2.4	113
251	Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME Journal, 2011, 5, 1660-1670.	9.8	200
252	Anaerobic ammonia oxidation in a fertilized paddy soil. ISME Journal, 2011, 5, 1905-1912.	9.8	259

#	Article	IF	CITATIONS
253	The ultrastructure of the compartmentalized anaerobic ammonium-oxidizing bacteria is linked to their energy metabolism. Biochemical Society Transactions, 2011, 39, 1805-1810.	3.4	12
254	Proteins and protein complexes involved in the biochemical reactions of anaerobic ammonium-oxidizing bacteria. Biochemical Society Transactions, 2011, 39, 303-308.	3.4	49
255	Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Applied Microbiology and Biotechnology, 2011, 92, 845-854.	3.6	157
256	Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 2011, 1, 41.	3.0	186
257	Cultivation, Detection, and Ecophysiology of Anaerobic Ammonium-Oxidizing Bacteria. Methods in Enzymology, 2011, 486, 89-108.	1.0	72
258	Liquid Chromatographyâ€"Mass Spectrometry-Based Proteomics of Nitrosomonas. Methods in Enzymology, 2011, 486, 465-482.	1.0	23
259	Anammox bacteria in different compartments of recirculating aquaculture systems. Biochemical Society Transactions, 2011, 39, 1817-1821.	3.4	15
260	Autotrophic Methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicumSolV Uses the Calvin-Benson-Bassham Cycle for Carbon Dioxide Fixation. Journal of Bacteriology, 2011, 193, 4438-4446.	2.2	157
261	Detection, Isolation, and Characterization of Acidophilic Methanotrophs from Sphagnum Mosses. Applied and Environmental Microbiology, 2011, 77, 5643-5654.	3.1	93
262	New Anaerobic, Ammonium-Oxidizing Community Enriched from Peat Soil. Applied and Environmental Microbiology, 2011, 77, 966-971.	3.1	100
263	Simultaneous Nitrite-Dependent Anaerobic Methane and Ammonium Oxidation Processes. Applied and Environmental Microbiology, 2011, 77, 6802-6807.	3.1	147
264	Complete Genome Sequence of the Aerobic Marine Methanotroph Methylomonas methanica MC09. Journal of Bacteriology, 2011, 193, 7001-7002.	2.2	72
265	Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph †Candidatus Methylomirabilis oxyfera'. Microbiology (United Kingdom), 2011, 157, 890-898.	1.8	40
266	Genome Sequence of the Methanotrophic Alphaproteobacterium Methylocystis sp. Strain Rockwell (ATCC 49242). Journal of Bacteriology, 2011, 193, 2668-2669.	2.2	55
267	MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks. Bioinformatics, 2011, 27, 196-203.	4.1	75
268	Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Applied Microbiology and Biotechnology, 2010, 86, 1043-1055.	3.6	155
269	Monitoring the stability of an Anammox reactor under high salinity conditions. Biochemical Engineering Journal, 2010, 51, 167-171.	3.6	93
270	Induced cooperation between marine nitrifiers and anaerobic ammonium-oxidizing bacteria by incremental exposure to oxygen. Systematic and Applied Microbiology, 2010, 33, 407-415.	2.8	29

#	Article	IF	Citations
271	Comparison of the effects of different salts on aerobic ammonia oxidizers for treating ammonium-rich organic wastewater by free and sodium alginate immobilized biomass system. Chemosphere, 2010, 81, 669-673.	8.2	27
272	Intracellular localization of membraneâ€bound ATPases in the compartmentalized anammox bacterium â€~ <i>Candidatus</i> Kuenenia stuttgartiensis'. Molecular Microbiology, 2010, 77, 701-715.	2.5	71
273	Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464, 543-548.	27.8	1,521
274	Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geoscience, 2010, 3, 617-621.	12.9	227
275	Denitrification at pH 4 by a soilâ€derived <i>Rhodanobacter</i> â€dominated community. Environmental Microbiology, 2010, 12, 3264-3271.	3.8	95
276	Impact of Temperature on Ladderane Lipid Distribution in Anammox Bacteria. Applied and Environmental Microbiology, 2010, 76, 1596-1603.	3.1	53
277	Genome Sequence of the Obligate Methanotroph <i>Methylosinus trichosporium</i> Strain OB3b. Journal of Bacteriology, 2010, 192, 6497-6498.	2.2	98
278	Effect of Nitric Oxide on Anammox Bacteria. Applied and Environmental Microbiology, 2010, 76, 6304-6306.	3.1	83
279	Ammonium Concentrations in Produced Waters from a Mesothermic Oil Field Subjected to Nitrate Injection Decrease through Formation of Denitrifying Biomass and Anammox Activity. Applied and Environmental Microbiology, 2010, 76, 4977-4987.	3.1	61
280	Nitrogen fixation by the verrucomicrobial methanotroph †Methylacidiphilum fumariolicum†Methylacidiphilum fumariolicum†SolV. Microbiology (United Kingdom), 2010, 156, 1052-1059.	1.8	109
281	Lipids of symbiotic methane-oxidizing bacteria in peat moss studied using stable carbon isotopic labelling. Organic Geochemistry, 2010, 41, 1040-1044.	1.8	43
282	Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Research, 2010, 44, 5014-5020.	11.3	161
283	Biodiversity of N-cycle bacteria in nitrogen removing moving bed biofilters for freshwater recirculating aquaculture systems. Aquaculture, 2010, 306, 177-184.	3.5	57
284	Microbial and Physicochemical Characteristics of Compact Anaerobic Ammonium-Oxidizing Granules in an Upflow Anaerobic Sludge Blanket Reactor. Applied and Environmental Microbiology, 2010, 76, 2652-2656.	3.1	131
285	Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. Water Science and Technology, 2009, 60, 3211-3217.	2.5	135
286	Enrichment and Molecular Detection of Denitrifying Methanotrophic Bacteria of the NC10 Phylum. Applied and Environmental Microbiology, 2009, 75, 3656-3662.	3.1	446
287	N2O emission hotspots at different spatial scales and governing factors for small scale hotspots. Science of the Total Environment, 2009, 407, 2325-2332.	8.0	72
288	The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community. Systematic and Applied Microbiology, 2009, 32, 278-289.	2.8	124

#	Article	IF	CITATIONS
289	Cell division ring, a new cell division protein and vertical inheritance of a bacterial organelle in anammox planctomycetes. Molecular Microbiology, 2009, 73, 1009-1019.	2.5	53
290	Presence and activity of anaerobic ammonium-oxidizing bacteria at deep-sea hydrothermal vents. ISME Journal, 2009, 3, 117-123.	9.8	145
291	Diversity of methanogenic archaea in a mangrove sediment and isolation of a new <i>Methanococcoides</i> strain. FEMS Microbiology Letters, 2009, 291, 247-253.	1.8	60
292	Carbon isotope-labelling experiments indicate that ladderane lipids of anammox bacteria are synthesized by a previously undescribed, novel pathway. FEMS Microbiology Letters, 2009, 292, 115-122.	1.8	19
293	16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiology Ecology, 2009, 67, 343-350.	2.7	86
294	Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments is dominated by sulfate-reducing bacteria. FEMS Microbiology Ecology, 2009, 70, 483-492.	2.7	36
295	Biophysical properties of membrane lipids of anammox bacteria: II. Impact of temperature and bacteriohopanoids. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1452-1457.	2.6	20
296	Nitrous oxide emission during wastewater treatment. Water Research, 2009, 43, 4093-4103.	11.3	1,032
297	Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment. Journal of Microbiological Methods, 2009, 78, 119-126.	1.6	41
298	Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 65-84.	5.2	441
299	A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis. Biology Direct, 2009, 4, 8.	4.6	31
300	Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4752-4757.	7.1	677
301	Environmental, genomic and taxonomic perspectives on methanotrophic <i>Verrucomicrobia</i> Environmental Microbiology Reports, 2009, 1, 293-306.	2.4	431
302	The microbial methane cycle. Environmental Microbiology Reports, 2009, 1, 279-284.	2.4	60
303	Clustering Metagenome Short Reads Using Weighted Proteins. Lecture Notes in Computer Science, 2009, , 152-163.	1.3	5
304	Evidence-Based Clustering of Reads and Taxonomic Analysis of Metagenomic Data. Lecture Notes in Computer Science, 2009, , 102-112.	1.3	0
305	Ladderane lipid distribution in four genera of anammox bacteria. Archives of Microbiology, 2008, 190, 51-66.	2.2	92
306	Candidatus â€Â~Brocadia fulgida': an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiology Ecology, 2008, 63, 46-55.	2.7	388

#	Article	IF	CITATIONS
307	Bacteria associated with iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. ISME Journal, 2008, 2, 1231-1242.	9.8	86
308	A microdiversity study of anammox bacteria reveals a novel <i>Candidatus</i> Scalindua phylotype in marine oxygen minimum zones. Environmental Microbiology, 2008, 10, 3106-3119.	3.8	250
309	Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environmental Microbiology, 2008, 10, 3120-3129.	3.8	231
310	Denitrifying bacteria anaerobically oxidize methane in the absence of <i>Archaea</i> Environmental Microbiology, 2008, 10, 3164-3173.	3.8	404
311	Environmental detection of octahaem cytochrome ⟨i⟩c⟨ i⟩ hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammoniumâ€oxidizing bacteria. Environmental Microbiology, 2008, 10, 3140-3149.	3.8	175
312	Evolution of an octahaem cytochrome <i>c</i> protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environmental Microbiology, 2008, 10, 3150-3163.	3.8	147
313	The microbial nitrogen cycle. Environmental Microbiology, 2008, 10, 2903-2909.	3.8	204
314	Physiological and phylogenetic study of an ammonium-oxidizing culture at high nitrite concentrations. Systematic and Applied Microbiology, 2008, 31, 114-125.	2.8	40
315	A serpin in the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Mycological Research, 2008, 112, 999-1006.	2.5	34
316	Combined structural and chemical analysis of the anammoxosome: A membrane-bounded intracytoplasmic compartment in anammox bacteria. Journal of Structural Biology, 2008, 161, 401-410.	2.8	176
317	Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research, 2008, 42, 812-826.	11.3	394
318	Effect of Dynamic Process Conditions on Nitrogen Oxides Emission from a Nitrifying Culture. Environmental Science & Environmen	10.0	250
319	Linking Ultrastructure and Function in Four Genera of Anaerobic Ammonium-Oxidizing Bacteria: Cell Plan, Glycogen Storage, and Localization of Cytochrome <i>c</i> Proteins. Journal of Bacteriology, 2008, 190, 708-717.	2.2	163
320	Response of Anaerobic Ammonium-Oxidizing Bacteria to Hydroxylamine. Applied and Environmental Microbiology, 2008, 74, 4417-4426.	3.1	78
321	Combined structural and chemical analysis of unique anammox bacteria that contain a prokaryotic organelle., 2008,, 65-66.		0
322	Unraveling the Source of Nitric Oxide Emission During Nitrification. Water Environment Research, 2007, 79, 2499-2509.	2.7	65
323	Expression and characterisation of a major c-type cytochrome encoded by gene kustc0563 from Kuenenia stuttgartiensis as a recombinant protein in Escherichia coli. Protein Expression and Purification, 2007, 51, 28-33.	1.3	14
324	Anammox. , 2007, , 245-262.		10

#	Article	IF	Citations
325	Iron Sulfide and Pyrite as Potential Electron Donors for Microbial Nitrate Reduction in Freshwater Wetlands. Geomicrobiology Journal, 2007, 24, 391-401.	2.0	87
326	Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 2007, 40, 859-865.	3.2	480
327	Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature, 2007, 450, 874-878.	27.8	388
328	Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology, 2007, 9, 635-642.	3.8	462
329	Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environmental Microbiology, 2007, 9, 1476-1484.	3.8	307
330	Diversity and abundance of aerobic and anaerobic ammoniumâ€oxidizing bacteria in freshwater sediments of the Xinyi River (China). Environmental Microbiology, 2007, 9, 2375-2382.	3.8	116
331	Wholeâ€genome analysis of the ammoniaâ€oxidizing bacterium, <i>Nitrosomonas eutropha</i> C91: implications for niche adaptation. Environmental Microbiology, 2007, 9, 2993-3007.	3.8	150
332	Candidatus "Anammoxoglobus propionicus―a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 2007, 30, 39-49.	2.8	511
333	Argininosuccinate synthetase and argininosuccinate lyase: two ornithine cycle enzymes from Agaricus bisporus. Mycological Research, 2007, 111, 493-502.	2.5	19
334	The role of ornithine aminotransferase in fruiting body formation of the mushroom Agaricus bisporus. Mycological Research, 2007, 111, 909-918.	2.5	17
335	Adaptation of a freshwater anammox population to high salinity wastewater. Journal of Biotechnology, 2006, 126, 546-553.	3.8	233
336	Challenging protein purification from anammox bacteria. International Journal of Biological Macromolecules, 2006, 39, 88-94.	7.5	23
337	Role of nitrogen oxides in the metabolism of ammonia-oxidizing bacteria. Biochemical Society Transactions, 2006, 34, 179-181.	3.4	29
338	Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups. FEMS Microbiology Letters, 2006, 258, 297-304.	1.8	82
339	Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals. FEMS Microbiology Ecology, 2006, 58, 439-448.	2.7	27
340	A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 2006, 440, 918-921.	27.8	1,115
341	Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 2006, 440, 790-794.	27.8	1,075
342	Evidence for complete denitrification in a benthic foraminifer. Nature, 2006, 443, 93-96.	27.8	407

#	Article	IF	Citations
343	Expression of the urease gene of Agaricus bisporus: a tool for studying fruit body formation and post-harvest development. Applied Microbiology and Biotechnology, 2006, 71, 486-492.	3.6	18
344	Anammoxosomes of Anaerobic Ammonium-oxidizing Planctomycetes. Microbiology Monographs, 2006, , 259-283.	0.6	10
345	Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochemical Society Transactions, 2006, 34, 174-178.	3.4	77
346	1994–2004: 10Âyears of research on the anaerobic oxidation of ammonium. Biochemical Society Transactions, 2005, 33, 119-123.	3.4	163
347	Complete conversion of nitrate into dinitrogen gas in co-cultures of denitrifying bacteria. Biochemical Society Transactions, 2005, 33, 205-209.	3.4	21
348	Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature, 2005, 436, 1153-1156.	27.8	379
349	Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS Journal, 2005, 272, 4270-4283.	4.7	150
350	The ornithine cycle enzyme arginase from Agaricus bisporus and its role in urea accumulation in fruit bodies. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1681, 107-115.	2.4	23
351	Enrichment of Anammox from Activated Sludge and Its Application in the CANON Process. Microbial Ecology, 2005, 49, 236-244.	2.8	136
352	Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations. Applied Microbiology and Biotechnology, 2005, 68, 808-817.	3.6	130
353	Kinetics, diffusional limitation and microscale distribution of chemistry and organisms in a CANON reactor. FEMS Microbiology Ecology, 2005, 51, 247-256.	2.7	170
354	A new soluble 10 kDa monoheme cytochromec-552 from the anammox bacteriumCandidatus"Kuenenia stuttgartiensisâ€₃ FEMS Microbiology Letters, 2005, 252, 273-278.	1.8	33
355	From The Cover: Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6478-6483.	7.1	664
356	Protein Complexes in the Archaeon Methanothermobacter thermautotrophicus Analyzed by Blue Native/SDS-PAGE and Mass Spectrometry. Molecular and Cellular Proteomics, 2005, 4, 1653-1663.	3.8	79
357	Propionate Oxidation by and Methanol Inhibition of Anaerobic Ammonium-Oxidizing Bacteria. Applied and Environmental Microbiology, 2005, 71, 1066-1071.	3.1	353
358	Biomarkers for In Situ Detection of Anaerobic Ammonium-Oxidizing (Anammox) Bacteria. Applied and Environmental Microbiology, 2005, 71, 1677-1684.	3.1	325
359	Anammox Organisms: Enrichment, Cultivation, and Environmental Analysis. Methods in Enzymology, 2005, 397, 34-57.	1.0	57
360	Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants. Microbiology (United Kingdom), 2004, 150, 4107-4114.	1.8	155

#	Article	IF	CITATIONS
361	Physiologic and Proteomic Evidence for a Role of Nitric Oxide in Biofilm Formation by <i>Nitrosomonas europaea</i> and Other Ammonia Oxidizers. Journal of Bacteriology, 2004, 186, 2781-2788.	2.2	116
362	Ammonium and hydroxylamine uptake and accumulation in Nitrosomonas. Microbiology (United) Tj ETQq0 0 0 rgl	BŢ.¦Overlo	ock 10 Tf 50
363	Nitrification and Anammox with Urea as the Energy Source. Systematic and Applied Microbiology, 2004, 27, 271-278.	2.8	36
364	Detection and widespread distribution of the nrfA gene encoding nitrite reduction to ammonia, a short circuit in the biological nitrogen cycle that competes with denitrification. FEMS Microbiology Ecology, 2004, 49, 433-443.	2.7	154
365	Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria. Reviews in Environmental Science and Biotechnology, 2004, 3, 255-264.	8.1	71
366	Enrichment of Anammox biomass from municipal activated sludge: experimental and modelling results. Journal of Chemical Technology and Biotechnology, 2004, 79, 1421-1428.	3.2	149
367	The anammoxosome: an intracytoplasmic compartment in anammox bacteria. FEMS Microbiology Letters, 2004, 233, 7-13.	1.8	243
368	A mixed ladderane/n-alkyl glycerol diether membrane lipid in an anaerobic ammonium-oxidizing bacterium. Chemical Communications, 2004, , 2590-2591.	4.1	27
369	Bacterium-Based NO 2 â° Biosensor for Environmental Applications. Applied and Environmental Microbiology, 2004, 70, 6551-6558.	3.1	58
370	Implementation of the Anammox Process for Improved Nitrogen Removal. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 1729-1738.	1.7	33
371	Anaerobic Oxidation of Methane and Ammonium. Annual Review of Microbiology, 2004, 58, 99-117.	7.3	285
372	Stable Carbon Isotopic Fractionations Associated with Inorganic Carbon Fixation by Anaerobic Ammonium-Oxidizing Bacteria. Applied and Environmental Microbiology, 2004, 70, 3785-3788.	3.1	151
373	The occurrence of hopanoids in planctomycetes: implications for the sedimentary biomarker record. Organic Geochemistry, 2004, 35, 561-566.	1.8	179
374	Stability of the ANAMMOX process in a gas-lift reactor and a SBR. Journal of Biotechnology, 2004, 110, 159-170.	3.8	194
375	Anaerobic ammonium oxidation in an estuarine sediment. Aquatic Microbial Ecology, 2004, 36, 293-304.	1.8	232
376	Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Archives of Microbiology, 2003, 180, 134-141.	2.2	117
377	Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. Applied Microbiology and Biotechnology, 2003, 63, 107-114.	3.6	156
378	Candidatus "Scalindua brodaeâ€; sp. nov., Candidatus "Scalindua wagneriâ€; sp. nov., Two New Species of Anaerobic Ammonium Oxidizing Bacteria. Systematic and Applied Microbiology, 2003, 26, 529-538.	2.8	535

#	Article	IF	Citations
379	Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1628, 30-39.	2.4	24
380	New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiology Reviews, 2003, 27, 481-492.	8.6	407
381	CANON and Anammox in a gas-lift reactor. FEMS Microbiology Letters, 2003, 218, 339-344.	1.8	287
382	Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 2003, 422, 608-611.	27.8	1,081
383	High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by ?. FEMS Yeast Research, 2003, 4, 69-78.	2.3	300
384	Genomic DNA analysis of genes encoding (hemi-)cellulolytic enzymes of the anaerobic fungus Piromyces sp. E2. Gene, 2003, 314, 73-80.	2.2	19
385	Anaerobic Ammonia Oxidation in the Presence of Nitrogen Oxides (NO \times) by Two Different Lithotrophs. Applied and Environmental Microbiology, 2002, 68, 5351-5357.	3.1	79
386	Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Research, 2002, 36, 2475-2482.	11.3	508
387	A highly expressed family 1 \hat{l}^2 -glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1574, 293-303.	2.4	63
388	Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature, 2002, 419, 708-712.	27.8	426
389	Aerobic and anaerobic ammonia oxidizing bacteria – competitors or natural partners?. FEMS Microbiology Ecology, 2002, 39, 175-181.	2.7	130
390	Improved nitrogen removal by application of new nitrogen-cycle bacteria. Reviews in Environmental Science and Biotechnology, 2002, 1, 51-63.	8.1	88
391	The anammox case-a new experimental manifesto for microbiological eco-physiology. Antonie Van Leeuwenhoek, 2002, 81, 693-702.	1.7	89
392	Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Archives of Microbiology, 2001, 175, 94-101.	2.2	70
393	Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Archives of Microbiology, 2001, 175, 413-429.	2.2	334
394	Isolation and properties of obligately chemolithoautotrophic and extremely alkali-tolerant ammonia-oxidizing bacteria from Mongolian soda lakes. Archives of Microbiology, 2001, 176, 170-177.	2.2	68
395	16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environmental Microbiology, 2001, 3, 450-459.	3.8	227
396	Microbiology and application of the anaerobic ammonium oxidation (â€~anammox') process. Current Opinion in Biotechnology, 2001, 12, 283-288.	6.6	534

#	Article	IF	Citations
397	New pathways for ammonia conversion in soil and aquatic systems. Plant and Soil, 2001, 230, 9-19.	3.7	107
398	Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene. Microbiology (United Kingdom), 2001, 147, 2247-2253.	1.8	57
399	Molecular Evidence for Genus Level Diversity of Bacteria Capable of Catalyzing Anaerobic Ammonium Oxidation. Systematic and Applied Microbiology, 2000, 23, 93-106.	2.8	625
400	Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes. Water Research, 2000, 34, 2080-2088.	11.3	110
401	Involvement of a Novel Hydroxylamine Oxidoreductase in Anaerobic Ammonium Oxidationâ€. Biochemistry, 2000, 39, 5405-5412.	2.5	135
402	Key Physiology of Anaerobic Ammonium Oxidation. Applied and Environmental Microbiology, 1999, 65, 3248-3250.	3.1	1,124
403	Missing lithotroph identified as new planctomycete. Nature, 1999, 400, 446-449.	27.8	1,382
404	Hydroxylamine oxidation and subsequent nitrous oxide production by the heterotrophic ammonia oxidizer Alcaligenes faecalis. Applied Microbiology and Biotechnology, 1999, 51, 255-261.	3.6	107
405	Title is missing!. Biotechnology Letters, 1998, 12, 263-265.	0.5	3
406	Molecular microbial diversity in a nitrifying reactor system without sludge retention. FEMS Microbiology Ecology, 1998, 27, 239-249.	2.7	45
407	The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. FEMS Microbiology Letters, 1998, 158, 61-67.	1.8	86
408	The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 1998, 22, 421-437.	8.6	660
409	The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 1998, 50, 589-596.	3.6	1,857
410	Isolation and characterization of a novel facultatively alkaliphilic Nitrobacter species, N. alkalicus sp. nov Archives of Microbiology, 1998, 170, 345-352.	2.2	95
411	The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 1998, 22, 421-437.	8.6	25
412	The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism. FEMS Microbiology Letters, 1998, 158, 61-67.	1.8	1
413	Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology (United Kingdom), 1997, 143, 2415-2421.	1.8	279
414	Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Research, 1997, 31, 1955-1962.	11.3	456

#	Article	IF	CITATIONS
415	Towards a more sustainable municipal wastewater treatment system. Water Science and Technology, 1997, 35, 171-180.	2.5	294
416	Hydroxylamine metabolism in Pseudomonas PB16: involvement of a novel hydroxylamine oxidoreductase. Antonie Van Leeuwenhoek, 1997, 71, 69-74.	1.7	46
417	Novel principles in the microbial conversion of nitrogen compounds. Antonie Van Leeuwenhoek, 1997, 71, 75-93.	1.7	167
418	Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Desulfovibrio spp. in environmental samples. Applied and Environmental Microbiology, 1997, 63, 4360-4369.	3.1	71
419	Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Applied and Environmental Microbiology, 1997, 63, 2446-2448.	3.1	365
420	Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions. Applied and Environmental Microbiology, 1996, 62, 2421-2426.	3.1	244
421	Purification and properties of oxaloacetate decarboxylase fromCorynebacterium glutamicum. Antonie Van Leeuwenhoek, 1995, 67, 221-227.	1.7	31
422	Growth of Nitrosomonas europaeaon hydroxylamine. FEMS Microbiology Letters, 1995, 125, 179-184.	1.8	46
423	Recent Advances in the Physiology and Genetics of Amino Acid-Producing Bacteria. Critical Reviews in Biotechnology, 1995, 15, 73-103.	9.0	96
424	Anaerobic oxidation of ammonium is a biologically mediated process. Applied and Environmental Microbiology, 1995, 61, 1246-1251.	3.1	655
425	Metabolic Engineering of Corynebacterium glutamicuma. Annals of the New York Academy of Sciences, 1994, 721, 12-29.	3.8	15
426	Regulation of phospho(enol)-pyruvate-and oxaloacetate-converting enzymes in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 1994, 41, 47-52.	3.6	31
427	Effects of phosphoenol pyruvate carboxylase deficiency on metabolism and lysine production in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 1994, 40, 857-863.	3.6	45
428	Effects of phosphoenol pyruvate carboxylase deficiency on metabolism and lysine production in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 1994, 40, 857-863.	3.6	2
429	Cloning of the pyruvate kinase gene (pyk) of Corynebacterium glutamicum and site-specific inactivation of pyk in a lysine-producing Corynebacterium lactofermentum strain. Applied and Environmental Microbiology, 1994, 60, 2494-2500.	3.1	45
430	Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum. Applied and Environmental Microbiology, 1994, 60, 2501-2507.	3.1	60
431	Regulation of phospho(enol)-pyruvate- and oxaloacetate-converting enzymes in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 1994, 41, 47-52.	3 . 6	36
432	Characterization of phosphoenolpyruvate carboxykinase fromCorynebacterium glutamicum. FEMS Microbiology Letters, 1993, 111, 183-188.	1.8	59

#	Article	IF	CITATIONS
433	The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and $S=9/2$ iron-sulfur clusters. Biochemistry, 1993, 32, 10323-10330.	2.5	60
434	Characterization of phosphoenolpyruvate carboxykinase from Corynebacterium glutamicum. FEMS Microbiology Letters, 1993, 111, 183-188.	1.8	2
435	A fluoride-insensitive inorganic pyrophosphatase isolated from Methanothrix soehngenii. Archives of Microbiology, 1992, 157, 284-289.	2.2	25
436	Methanogenesis from acetate: a comparison of the acetate metabolism inMethanothrix soehngeniiandMethanosarcinaspp FEMS Microbiology Letters, 1992, 88, 181-198.	1.8	411
437	Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp FEMS Microbiology Letters, 1992, 88, 181-197.	1.8	15
438	Adenine nucleotide content and energy charge of Methanothrix soehngeniiduring acetate degradation. FEMS Microbiology Letters, 1991, 84, 313-318.	1.8	15
439	Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. FEBS Journal, 1991, 195, 385-391.	0.2	43
440	EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. FEBS Journal, 1991, 202, 1291-1297.	0.2	50
441	Adenine nucleotide content and energy charge of Methanothrix soehngenii during acetate degradation. FEMS Microbiology Letters, 1991, 84, 313-317.	1.8	1
442	Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiology Letters, 1990, 73, 339-344.	1.8	137
443	Purification and some properties of the methyl-CoM reductase of Methanothrix soehngenii. FEMS Microbiology Letters, 1990, 66, 183-186.	1.8	23
444	Purification and some properties of the methyl-CoM reductase of Methanothrix soehngenii. FEMS Microbiology Letters, 1990, 66, 183-186.	1.8	4
445	Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. Journal of Bacteriology, 1989, 171, 5430-5435.	2.2	94
446	Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. FEBS Journal, 1989, 181, 437-441.	0.2	40
447	Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Archives of Microbiology, 1988, 151, 84-89.	2.2	112
448	Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Applied and Environmental Microbiology, 1986, 52, 1374-1381.	3.1	175
449	Metabolism and Genomics of Anammox Bacteria. , 0, , 179-200.		10