List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4641478/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolomics Approaches to Dereplicate Natural Products from Coral-Derived Bioactive Bacteria. Journal of Natural Products, 2022, 85, 462-478.	3.0	14
2	Combining tangential flow filtration and size fractionation of mesocosm water as a method for the investigation of waterborne coral diseases. Biology Methods and Protocols, 2022, 7, bpac007.	2.2	6
3	Discovery, Synthesis, and Biological Evaluation of Anaenamides C and D from a New Marine Cyanobacterium, <i>Hormoscilla</i> sp Journal of Natural Products, 2022, 85, 581-589.	3.0	5
4	Anti-Inflammatory Dysidazirine Carboxylic Acid from the Marine Cyanobacterium Caldora sp. Collected from the Reefs of Fort Lauderdale, Florida. Molecules, 2022, 27, 1717.	3.8	6
5	Facilitation of a tropical seagrass by a chemosymbiotic bivalve increases with environmental stress. Journal of Ecology, 2021, 109, 204-217.	4.0	13
6	Fungal Epithiodiketopiperazines Carrying α,βâ€Polysulfide Bridges from <i>Penicillium steckii</i> YE, and Their Chemical Interconversion. ChemBioChem, 2021, 22, 416-422.	2.6	11
7	Gatorbulin-1, a distinct cyclodepsipeptide chemotype, targets a seventh tubulin pharmacological site. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
8	Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. Conservation Biology, 2021, 35, 1473-1483.	4.7	22
9	The role of algal chemical defenses in the feeding preferences of the long-spined sea urchin Diadema antillarum. Aquatic Ecology, 2021, 55, 941-953.	1.5	4
10	Metabolomics of Healthy and Stony Coral Tissue Loss Disease Affected Montastraea cavernosa Corals. Frontiers in Marine Science, 2021, 8, .	2.5	12
11	A doubling of stony coral cover on shallow forereefs at Carrie Bow Cay, Belize from 2014 to 2019. Scientific Reports, 2021, 11, 19185.	3.3	2
12	Bifunctional Doscadenamides Activate Quorum Sensing in Gram-Negative Bacteria and Synergize with TRAIL to Induce Apoptosis in Cancer Cells. Journal of Natural Products, 2021, 84, 779-789.	3.0	3
13	Patterns of Consumption Across a Caribbean Seascape: Roles of Habitat and Consumer Species Composition Through Time. Frontiers in Marine Science, 2021, 8, .	2.5	4
14	Soft-Sediment Communities of the Northern Indian River Lagoon, FL, United States. Frontiers in Marine Science, 2021, 8, .	2.5	1
15	Disease Diagnostics and Potential Coinfections by Vibrio coralliilyticus During an Ongoing Coral Disease Outbreak in Florida. Frontiers in Microbiology, 2020, 11, 569354.	3.5	55
16	Discovery, Total Synthesis, and SAR of Anaenamides A and B: Anticancer Cyanobacterial Depsipeptides with a Chlorinated Pharmacophore. Organic Letters, 2020, 22, 4235-4239.	4.6	12
17	Eudesmacarbonate, a Eudesmane-Type Sesquiterpene from a Marine Filamentous Cyanobacterial Mat (Oscillatoriales) in the Florida Keys. Journal of Natural Products, 2020, 83, 2030-2035.	3.0	7
18	Bivalve Feeding Responses to Microalgal Bloom Species in the Indian River Lagoon: the Potential for Top-Down Control. Estuaries and Coasts, 2020, 43, 1519-1532.	2.2	15

#	Article	IF	CITATIONS
19	Dolastatin 15 from a Marine Cyanobacterium Suppresses HIFâ€1α Mediated Cancer Cell Viability and Vascularization. ChemBioChem, 2020, 21, 2356-2366.	2.6	19
20	Discovery and Total Synthesis of Doscadenamide A: A Quorum Sensing Signaling Molecule from a Marine Cyanobacterium. Organic Letters, 2019, 21, 7274-7278.	4.6	10
21	Microbial Community Shifts Associated With the Ongoing Stony Coral Tissue Loss Disease Outbreak on the Florida Reef Tract. Frontiers in Microbiology, 2019, 10, 2244.	3.5	143
22	Isolation, Structure Elucidation and Biological Evaluation of Lagunamide D: A New Cytotoxic Macrocyclic Depsipeptide from Marine Cyanobacteria. Marine Drugs, 2019, 17, 83.	4.6	21
23	Chemical Ecology of Marine Sponges: New Opportunities through "-Omics― Integrative and Comparative Biology, 2019, 59, 765-776.	2.0	35
24	Discovery of Amantamide, a Selective CXCR7 Agonist from Marine Cyanobacteria. Organic Letters, 2019, 21, 1622-1626.	4.6	13
25	Pathogenesis of a Tissue Loss Disease Affecting Multiple Species of Corals Along the Florida Reef Tract. Frontiers in Marine Science, 2019, 6, .	2.5	110
26	Chemical and Metagenomic Studies of the Lethal Black Band Disease of Corals Reveal Two Broadly Distributed, Redox-Sensitive Mixed Polyketide/Peptide Macrocycles. Journal of Natural Products, 2019, 82, 111-121.	3.0	12
27	Structural Diversity and Anticancer Activity of Marineâ€Derived Elastase Inhibitors: Key Features and Mechanisms Mediating the Antimetastatic Effects in Invasive Breast Cancer. ChemBioChem, 2018, 19, 815-825.	2.6	23
28	Apratyramide, a Marine-Derived Peptidic Stimulator of VEGF-A and Other Growth Factors with Potential Application in Wound Healing. ACS Chemical Biology, 2018, 13, 91-99.	3.4	17
29	Isolation and Characterization of Anaephenes A–C, Alkylphenols from a Filamentous Cyanobacterium (<i>Hormoscilla</i> sp., Oscillatoriales). Journal of Natural Products, 2018, 81, 2716-2721.	3.0	21
30	Discovery, Synthesis, Pharmacological Profiling, and Biological Characterization of Brintonamides A–E, Novel Dual Protease and GPCR Modulators from a Marine Cyanobacterium. Journal of Medicinal Chemistry, 2018, 61, 6364-6378.	6.4	19
31	Spatial and temporal shifts in the diet of the barnacle <i>Amphibalanus eburneus</i> within a subtropical estuary. PeerJ, 2018, 6, e5485.	2.0	4
32	Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nature Chemical Biology, 2017, 13, 537-543.	8.0	141
33	Bloom dynamics and chemical defenses of benthic cyanobacteria in the Indian River Lagoon, Florida. Harmful Algae, 2017, 69, 75-82.	4.8	19
34	Kempopeptin C, a Novel Marine-Derived Serine Protease Inhibitor Targeting Invasive Breast Cancer. Marine Drugs, 2017, 15, 290.	4.6	26
35	Comparative Metagenomics of the Polymicrobial Black Band Disease of Corals. Frontiers in Microbiology, 2017, 8, 618.	3.5	27
36	Elevated Temperature and Allelopathy Impact Coral Recruitment. PLoS ONE, 2016, 11, e0166581.	2.5	26

VALERIE J PAUL

#	Article	IF	CITATIONS
37	Pitiamides A and B, Multifunctional Fatty Acid Amides from Marine Cyanobacteria. Planta Medica, 2016, 82, 897-902.	1.3	14
38	Discovery, Total Synthesis and Key Structural Elements for the Immunosuppressive Activity of Cocosolide, a Symmetrical Glycosylated Macrolide Dimer from Marine Cyanobacteria. Chemistry - A European Journal, 2016, 22, 8158-8166.	3.3	29
39	Tasiamide F, a potent inhibitor of cathepsins D and E from a marine cyanobacterium. Bioorganic and Medicinal Chemistry, 2016, 24, 3276-3282.	3.0	29
40	Biosynthesis of coral settlement cue tetrabromopyrrole in marine bacteria by a uniquely adapted brominase–thioesterase enzyme pair. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3797-3802.	7.1	81
41	Multidimensional Screening Platform for Simultaneously Targeting Oncogenic KRAS and Hypoxia-Inducible Factors Pathways in Colorectal Cancer. ACS Chemical Biology, 2016, 11, 1322-1331.	3.4	28
42	Palatability and chemical defences of benthic cyanobacteria to a suite of herbivores. Journal of Experimental Marine Biology and Ecology, 2016, 474, 100-108.	1.5	27
43	Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria. ISME Journal, 2016, 10, 1204-1216.	9.8	82
44	<i>Caldora penicillata</i> gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance. Journal of Phycology, 2015, 51, 670-681.	2.3	57
45	Crustose coralline algal species host distinct bacterial assemblages on their surfaces. ISME Journal, 2015, 9, 2527-2536.	9.8	59
46	Complexity of Naturally Produced Polybrominated Diphenyl Ethers Revealed via Mass Spectrometry. Environmental Science & Technology, 2015, 49, 1339-1346.	10.0	47
47	Targeted Natural Products Discovery from Marine Cyanobacteria Using Combined Phylogenetic and Mass Spectrometric Evaluation. Journal of Natural Products, 2015, 78, 486-492.	3.0	35
48	Amantelides A and B, Polyhydroxylated Macrolides with Differential Broad-Spectrum Cytotoxicity from a Guamanian Marine Cyanobacterium. Journal of Natural Products, 2015, 78, 1957-1962.	3.0	29
49	Eggs and larvae of Acropora palmata and larvae of Porites astreoides contain high amounts of dimethylsulfoniopropionate. Journal of Experimental Marine Biology and Ecology, 2015, 473, 146-151.	1.5	0
50	Carriebowlinol, an Antimicrobial Tetrahydroquinolinol from an Assemblage of Marine Cyanobacteria Containing a Novel Taxon. Journal of Natural Products, 2015, 78, 534-538.	3.0	27
51	Effects of Toxic Compounds in Montipora capitata on Exogenous and Endogenous Zooxanthellae Performance and Fertilization Success. PLoS ONE, 2015, 10, e0118364.	2.5	15
52	Marine chemical ecology in benthic environments. Natural Product Reports, 2014, 31, 1510-1553.	10.3	69
53	The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133086.	2.6	135
54	Modular Strategies for Structure and Function Employed by Marine Cyanobacteria: Characterization and Synthesis of Pitinoic Acids. Organic Letters, 2013, 15, 4050-4053.	4.6	24

#	Article	IF	CITATIONS
55	Potent Elastase Inhibitors from Cyanobacteria: Structural Basis and Mechanisms Mediating Cytoprotective and Anti-Inflammatory Effects in Bronchial Epithelial Cells. Journal of Medicinal Chemistry, 2013, 56, 1276-1290.	6.4	64
56	Five chemically rich species of tropical marine cyanobacteria of the genus <i><scp>O</scp>keania</i> gen. nov. (<scp>O</scp> scillatoriales, <scp>C</scp> yanoprokaryota). Journal of Phycology, 2013, 49, 1095-1106.	2.3	91
57	Biogeographic and phylogenetic effects on feeding resistance of generalist herbivores toward plant chemical defenses. Ecology, 2013, 94, 18-24.	3.2	18
58	Phylogenetic Inferences Reveal a Large Extent of Novel Biodiversity in Chemically Rich Tropical Marine Cyanobacteria. Applied and Environmental Microbiology, 2013, 79, 1882-1888.	3.1	67
59	Cultivated Sea Lettuce is a Multiorgan Protector from Oxidative and Inflammatory Stress by Enhancing the Endogenous Antioxidant Defense System. Cancer Prevention Research, 2013, 6, 989-999.	1.5	17
60	Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 2012, 46, 1349-1363.	11.3	1,252
61	Marine chemical ecology in benthic environments. Natural Product Reports, 2011, 28, 345-387.	10.3	130
62	Lyngbyoic acid, a "tagged―fatty acid from a marine cyanobacterium, disrupts quorum sensing in Pseudomonas aeruginosa. Molecular BioSystems, 2011, 7, 1205.	2.9	80
63	Coral Reef Algae. , 2011, , 241-272.		80
64	Veraguamides Aâ^'G, Cyclic Hexadepsipeptides from a Dolastatin 16-Producing Cyanobacterium <i>Symploca</i> cf. <i>hydnoides</i> from Guam. Journal of Natural Products, 2011, 74, 917-927.	3.0	67
65	Pitiprolamide, a Proline-Rich Dolastatin 16 Analogue from the Marine Cyanobacterium <i>Lyngbya majuscula</i> from Guam. Journal of Natural Products, 2011, 74, 109-112.	3.0	57
66	Malyngamide 3 and Cocosamides A and B from the Marine Cyanobacterium <i>Lyngbya majuscula</i> from Cocos Lagoon, Guam. Journal of Natural Products, 2011, 74, 871-876.	3.0	51
67	Pitipeptolides C–F, antimycobacterial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula from Guam. Phytochemistry, 2011, 72, 2068-2074.	2.9	71
68	Porpoisamides A and B, two novel epimeric cyclic depsipeptides from a Florida Keys collection of Lyngbya sp Bioorganic and Medicinal Chemistry, 2011, 19, 6576-6580.	3.0	6
69	Intramolecular Modulation of Serine Protease Inhibitor Activity in a Marine Cyanobacterium with Antifeedant Properties. Marine Drugs, 2010, 8, 1803-1816.	4.6	19
70	Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis. Coral Reefs, 2010, 29, 71-81.	2.2	137
71	Isolation and Biological Evaluation of 8- <i>epi</i> Malyngamide C from the Floridian Marine Cyanobacterium <i>Lyngbya majuscula</i> . Journal of Natural Products, 2010, 73, 463-466.	3.0	79
72	Cytotoxic Halogenated Macrolides and Modified Peptides from the Apratoxin-Producing Marine Cyanobacterium <i>Lyngbya bouillonii</i> from Guam. Journal of Natural Products, 2010, 73, 1544-1552.	3.0	99

VALERIE J PAUL

#	Article	IF	CITATIONS
73	Effects of the Florida red tide dinoflagellate, Karenia brevis, on oxidative stress and metamorphosis of larvae of the coral Porites astreoides. Harmful Algae, 2010, 9, 173-179.	4.8	22
74	Malyngolide from the cyanobacterium <i>Lyngbya majuscula</i> interferes with quorum sensing circuitry. Environmental Microbiology Reports, 2010, 2, 739-744.	2.4	78
75	Grassypeptolides Aâ^'C, Cytotoxic Bis-thiazoline Containing Marine Cyclodepsipeptides. Journal of Organic Chemistry, 2010, 75, 8012-8023.	3.2	54
76	Molassamide, a Depsipeptide Serine Protease Inhibitor from the Marine Cyanobacterium <i>Dichothrix utahensis</i> . Journal of Natural Products, 2010, 73, 459-462.	3.0	61
77	Lyngbyastatins 8–10, Elastase Inhibitors with Cyclic Depsipeptide Scaffolds Isolated from the Marine Cyanobacterium Lyngbya semiplena. Marine Drugs, 2009, 7, 528-538.	4.6	76
78	Largamides A–C, Tiglic Acid-Containing Cyclodepsipeptides with Elastase-Inhibitory Activity from the Marine CyanobacteriumLyngbya confervoides. Planta Medica, 2009, 75, 528-533.	1.3	33
79	Bioassay-Guided Isolation and Identification of Desacetylmicrocolin B from <i>Lyngbya</i> cf. <i>polychroa</i> . Planta Medica, 2009, 75, 1427-1430.	1.3	24
80	Phylogenetic and Chemical Diversity of Three Chemotypes of Bloom-Forming <i>Lyngbya</i> Species () Tj ETQq(Environmental Microbiology, 2009, 75, 2879-2888.	0 0 rgBT 3.1	Overlock 10 64
81	Larval metamorphosis of Phestilla spp. in response to waterborne cues from corals. Journal of Experimental Marine Biology and Ecology, 2009, 375, 84-88.	1.5	20
82	Tiglicamides A–C, cyclodepsipeptides from the marine cyanobacterium Lyngbya confervoides. Phytochemistry, 2009, 70, 2058-2063.	2.9	37
83	Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling, 2009, 25, 413-427.	2.2	347
84	New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithsonian Contributions To the Marine Sciences, 2009, , 437-457.	1.0	278
85	Pompanopeptins A and B, new cyclic peptides from the marine cyanobacterium Lyngbya confervoides. Tetrahedron, 2008, 64, 4081-4089.	1.9	74
86	Kempopeptins A and B, Serine Protease Inhibitors with Different Selectivity Profiles from a Marine Cyanobacterium, <i>Lyngbya</i> sp <i>.</i> . Journal of Natural Products, 2008, 71, 1625-1629.	3.0	69
87	Marine chemical ecology. Natural Product Reports, 2008, 25, 662.	10.3	183
88	Dragonamides C and D, Linear Lipopeptides from the Marine Cyanobacterium Brown <i>Lyngbya polychroa</i> . Journal of Natural Products, 2008, 71, 887-890.	3.0	64
89	Total Structure Determination of Grassypeptolide, a New Marine Cyanobacterial Cytotoxin. Organic Letters, 2008, 10, 789-792.	4.6	67
90	Carriebowmide, a New Cyclodepsipeptide from the Marine Cyanobacterium Lyngbya polychroa. Journal of Natural Products, 2008, 71, 2060-2063.	3.0	43

#	Article	IF	CITATIONS
91	Chemical Defenses: From Compounds to Communities. Biological Bulletin, 2007, 213, 226-251.	1.8	167
92	Lyngbyastatins 5–7, Potent Elastase Inhibitors from Floridian Marine Cyanobacteria, <i>Lyngbya</i> spp Journal of Natural Products, 2007, 70, 1593-1600.	3.0	119
93	Chemical Deterrence of a Marine Cyanobacterium against Sympatric and Non-sympatric Consumers. Hydrobiologia, 2006, 553, 319-326.	2.0	36
94	Palatability of Macroalgae that Use Different Types of Chemical Defenses. Journal of Chemical Ecology, 2006, 32, 1883-1895.	1.8	95
95	Chemical Deterrence of a Cyanobacterial Metabolite against Generalized and Specialized Grazers. Journal of Chemical Ecology, 2006, 33, 213-217.	1.8	50
96	Feeding by coral reef mesograzers: algae or cyanobacteria?. Coral Reefs, 2006, 25, 617-627.	2.2	45
97	Benthic cyanobacterial bloom impacts the reefs of South Florida (Broward County, USA). Coral Reefs, 2005, 24, 693-697.	2.2	126
98	Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs, 2004, 23, 455-458.	2.2	93
99	Continuing Studies on the CyanobacteriumLyngbyasp.: Isolation and Structure Determination of 15-Norlyngbyapeptin A and Lyngbyabellin D. Journal of Natural Products, 2003, 66, 595-598.	3.0	45
100	The Structure of Palau'amide, a Potent Cytotoxin from a Species of the Marine Cyanobacterium Lyngbya. Journal of Natural Products, 2003, 66, 1545-1549.	3.0	66
101	Ulongapeptin, a Cytotoxic Cyclic Depsipeptide from a Palauan Marine CyanobacteriumLyngbyasp Journal of Natural Products, 2003, 66, 651-654.	3.0	63
102	Isolation and Structure Determination of Obyanamide, a Novel Cytotoxic Cyclic Depsipeptide from the Marine Cyanobacterium Lyngbya confervoides. Journal of Natural Products, 2002, 65, 29-31.	3.0	81
103	Ulongamides Aâ^'F, New β-Amino Acid-Containing Cyclodepsipeptides from Palauan Collections of the Marine CyanobacteriumLyngbyasp Journal of Natural Products, 2002, 65, 996-1000.	3.0	61
104	New apratoxins of marine cyanobacterial origin from guam and palau. Bioorganic and Medicinal Chemistry, 2002, 10, 1973-1978.	3.0	153
105	Structurally diverse new alkaloids from Palauan collections of the apratoxin-producing marine cyanobacterium Lyngbya sp Tetrahedron, 2002, 58, 7959-7966.	1.9	75
106	Total Structure Determination of Apratoxin A, a Potent Novel Cytotoxin from the Marine CyanobacteriumLyngbyamajuscula. Journal of the American Chemical Society, 2001, 123, 5418-5423.	13.7	345
107	Isolation of Dolastatin 10 from the Marine CyanobacteriumSymplocaSpecies VP642 and Total Stereochemistry and Biological Evaluation of Its Analogue Symplostatin 1. Journal of Natural Products, 2001, 64, 907-910.	3.0	345
108	Pitipeptolides A and B, New Cyclodepsipeptides from the Marine CyanobacteriumLyngbya majuscula. Journal of Natural Products, 2001, 64, 304-307.	3.0	102

#	Article	IF	CITATIONS
109	Vulnerability of sea hares to fish predators: importance of diet and fish species. Coral Reefs, 2001, 20, 320-324.	2.2	21
110	Isolation and Structure of the Cytotoxin Lyngbyabellin B and Absolute Configuration of Lyngbyapeptin A from the Marine CyanobacteriumLyngbya majuscula. Journal of Natural Products, 2000, 63, 1437-1439.	3.0	84
111	Isolation, Structure Determination, and Biological Activity of Lyngbyabellin A from the Marine Cyanobacterium Lyngbya majuscula. Journal of Natural Products, 2000, 63, 611-615.	3.0	159
112	Apramides Aâ^'G, Novel Lipopeptides from the Marine CyanobacteriumLyngbya majuscula. Journal of Natural Products, 2000, 63, 1106-1112.	3.0	54
113	Title is missing!. Journal of Chemical Ecology, 1999, 25, 735-755.	1.8	45
114	Symplostatin 2:  A Dolastatin 13 Analogue from the Marine Cyanobacterium Symploca hydnoides. Journal of Natural Products, 1999, 62, 655-658.	3.0	135
115	Tumonoic Acids, Novel Metabolites from a Cyanobacterial Assemblage ofLyngbya majusculaandSchizothrix calcicola. Journal of Natural Products, 1999, 62, 464-467.	3.0	28
116	Lyngbyastatin 2 and Norlyngbyastatin 2, Analogues of Dolastatin G and Nordolastatin G from the Marine CyanobacteriumLyngbyamajuscula. Journal of Natural Products, 1999, 62, 1702-1706.	3.0	51
117	Chemical defense of a marine cyanobacterial bloom. Journal of Experimental Marine Biology and Ecology, 1998, 225, 29-38.	1.5	86
118	Symplostatin 1:Â A Dolastatin 10 Analogue from the Marine CyanobacteriumSymplocahydnoides. Journal of Natural Products, 1998, 61, 1075-1077.	3.0	135
119	Isolation, Structure Determination, and Biological Activity of Dolastatin 12 and Lyngbyastatin 1 fromLyngbya majuscula/Schizothrix calcicolaCyanobacterial Assemblages. Journal of Natural Products, 1998, 61, 1221-1225.	3.0	112
120	Chemical defenses of the tropical, benthic marine cyanobacterium <i>Hormothamnion enteromorphoides</i> : Diverse consumers and synergisms. Limnology and Oceanography, 1997, 42, 911-917.	3.1	33
121	Are Tropical Herbivores More Resistant Than Temperate Herbivores to Seaweed Chemical Defenses? Diterpenoid Metobolites from Dictyota acutiloba as Feeding Deterrents for Tropical Versus Temperate Fishes and Urchins. Journal of Chemical Ecology, 1997, 23, 289-302.	1.8	74
122	Ypaoamide, a new broadly acting feeding deterrent from the marine cyanobacterium Lyngbya majuscula. Tetrahedron Letters, 1996, 37, 6263-6266.	1.4	91
123	Animal-plant defense association: the soft coral Sinularia sp. (Cnidaria, Alcyonacea) protects Halimeda sp. from herbivory. Journal of Experimental Marine Biology and Ecology, 1995, 186, 183-205.	1.5	24
124	Activation of chemical defenses in the tropical green algae Halimeda spp Journal of Experimental Marine Biology and Ecology, 1992, 160, 191-203.	1.5	167
125	Diet-derived chemical defenses in the sea hare Stylocheilus longicauda (Quoy et Gaimard 1824). Journal of Experimental Marine Biology and Ecology, 1991, 151, 227-243.	1.5	90
126	Evidence for chemical defense in tropical green algaCaulerpa ashmeadii (Caulerpaceae: Chlorophyta): Isolation of new bioactive sesquiterpenoids. Journal of Chemical Ecology, 1987, 13, 1171-1185.	1.8	63

#	Article	IF	CITATIONS
127	Toxic feeding deterrents from the tropical marine alga Caulerpa bikinensis (chlorophyta). Tetrahedron Letters, 1982, 23, 5017-5020.	1.4	34