
Jack H Jhamandas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4640253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recombinant Tissue-Type Plasminogen Activator (Alteplase) for Ischemic Stroke 3 to 5 Hours After Symptom Onset. JAMA - Journal of the American Medical Association, 1999, 282, 2019.	7.4	1,030
2	Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2020, 19, 609-633.	46.4	441
3	Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. Journal of Psychiatry and Neuroscience, 2013, 38, 6-23.	2.4	247
4	Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Research Bulletin, 1993, 30, 163-172.	3.0	225
5	RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 466-471.	7.1	206
6	Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5813-5818.	7.1	154
7	Branching projections of catecholaminergic brainstem neurons to the paraventricular hypothalamic nucleus and the central nucleus of the amygdala in the rat. Brain Research, 1993, 609, 81-92.	2.2	151
8	The hypothalamic paraventricular and lateral parabrachial nuclei receive collaterals from raphe nucleus neurons: A combined double retrograde and immunocytochemical study. Journal of Comparative Neurology, 1992, 318, 18-26.	1.6	128
9	HIV-1 Vpr Causes Neuronal Apoptosis and <i>In Vivo</i> Neurodegeneration. Journal of Neuroscience, 2007, 27, 3703-3711.	3.6	126
10	Measurement of rigidity in Parkinson's disease. Movement Disorders, 1997, 12, 24-32.	3.9	121
11	Chemically defined collateral projections from the pons to the central nucleus of the amygdala and hypothalamic paraventricular nucleus in the rat. Cell and Tissue Research, 1994, 277, 289-295.	2.9	109
12	Motor unit numbers and contractile properties after spinal cord injury. Annals of Neurology, 1990, 28, 496-502.	5.3	105
13	Proteolytic processing of SDF-1Â reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19182-19187.	7.1	97
14	Parabrachial nucleus projection to the amygdala in the rat: Electrophysiological and anatomical observations. Brain Research Bulletin, 1996, 39, 115-126.	3.0	89
15	Fucoidan inhibits cellular and neurotoxic effects of β-amyloid (Aβ) in rat cholinergic basal forebrain neurons. European Journal of Neuroscience, 2005, 21, 2649-2659.	2.6	88
16	Amyloid β (Aβ) Peptide Directly Activates Amylin-3 Receptor Subtype by Triggering Multiple Intracellular Signaling Pathways. Journal of Biological Chemistry, 2012, 287, 18820-18830.	3.4	80
17	Single Transmembrane Domain Insulin-Like Growth Factor-II/Mannose-6-Phosphate Receptor Regulates Central Cholinergic Function by Activating a G-Protein-Sensitive, Protein Kinase C-Dependent Pathway. Journal of Neuroscience, 2006, 26, 585-596.	3.6	79
18	Islet Amyloid Polypeptide (IAPP): A Second Amyloid in Alzheimer's Disease. Current Alzheimer Research, 2014, 11, 928-940.	1.4	76

JACK H JHAMANDAS

#	Article	IF	CITATIONS
19	Actions of β-Amyloid Protein on Human Neurons Are Expressed through the Amylin Receptor. American Journal of Pathology, 2011, 178, 140-149.	3.8	73
20	Cellular Mechanisms for Amyloid β-Protein Activation of Rat Cholinergic Basal Forebrain Neurons. Journal of Neurophysiology, 2001, 86, 1312-1320.	1.8	69
21	Galanin attenuates β-amyloid (Aβ) toxicity in rat cholinergic basal forebrain neurons. Neurobiology of Disease, 2006, 21, 413-420.	4.4	67
22	Hepatitis C Virus Core Protein Induces Neuroimmune Activation and Potentiates Human Immunodeficiency Virus-1 Neurotoxicity. PLoS ONE, 2010, 5, e12856.	2.5	66
23	Bioenergetic Mechanisms in Astrocytes May Contribute to Amyloid Plaque Deposition and Toxicity. Journal of Biological Chemistry, 2015, 290, 12504-12513.	3.4	63
24	Diagonal band neurons may mediate arterial baroreceptor input to hypothalamic vasopressin-secreting neurons. Neuroscience Letters, 1986, 65, 214-218.	2.1	62
25	Antagonist of the Amylin Receptor Blocks Â-Amyloid Toxicity in Rat Cholinergic Basal Forebrain Neurons. Journal of Neuroscience, 2004, 24, 5579-5584.	3.6	60
26	Beta Amyloid-Induced Depression of Hippocampal Long-Term Potentiation Is Mediated through the Amylin Receptor. Journal of Neuroscience, 2012, 32, 17401-17406.	3.6	58
27	Changes in blood volume and pressure induce c-fos expression in brainstem neurons that project to the paraventricular nucleus of the hypothalamus. Molecular Brain Research, 1995, 34, 99-108.	2.3	57
28	Novel Excitatory Actions of Galanin on Rat Cholinergic Basal Forebrain Neurons: Implications for Its Role in Alzheimer's Disease. Journal of Neurophysiology, 2002, 87, 696-704.	1.8	56
29	β-Amyloid Peptide Activates Non-α7 Nicotinic Acetylcholine Receptors in Rat Basal Forebrain Neurons. Journal of Neurophysiology, 2003, 90, 3130-3136.	1.8	56
30	Amyloid β Protein Modulates Glutamate-Mediated Neurotransmission in the Rat Basal Forebrain: Involvement of Presynaptic Neuronal Nicotinic Acetylcholine and Metabotropic Glutamate Receptors. Journal of Neuroscience, 2007, 27, 9262-9269.	3.6	54
31	Proteinase-Activated Receptor-2 Exerts Protective and Pathogenic Cell Type-Specific Effects in Alzheimer's Disease. Journal of Immunology, 2007, 179, 5493-5503.	0.8	53
32	Expression of c-fos Protein in Rat Brain Elicited by Electrical and Chemical Stimulation of the Hypothalamic Paraventricular Nucleus. Neuroendocrinology, 1994, 59, 590-602.	2.5	51
33	Neuronal receptors as targets for the action of amyloid-beta protein (Aβ) in the brain. Expert Reviews in Molecular Medicine, 2012, 14, e2.	3.9	46
34	Influence of nucleus tractus solitarius stimulation and baroreceptor activation on rat parabrachial neurons. Brain Research Bulletin, 1992, 28, 565-571.	3.0	42
35	β-Amyloid protein (Aβ) and human amylin regulation of apoptotic genes occurs through the amylin receptor. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 37-47.	4.9	42
36	Role of microglial amylin receptors in mediating beta amyloid (Aβ)-induced inflammation. Journal of Neuroinflammation, 2017, 14, 199.	7.2	41

JACK H JHAMANDAS

#	Article	IF	CITATIONS
37	Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation. Frontiers in Endocrinology, 2013, 4, 8.	3.5	39
38	Characterization of the Parabrachial Nucleus Input to the Hypothalamic Paraventricular Nucleus in the Rat. Journal of Neuroendocrinology, 1992, 4, 461-471.	2.6	38
39	Parabrachial nucleus projection towards the hypothalamic supraoptic nucleus: Electrophysiological and anatomical observations in the rat. Journal of Comparative Neurology, 1991, 308, 42-50.	1.6	35
40	Activation of nitric oxide-synthesizing neurones during precipitated morphine withdrawal. NeuroReport, 1996, 7, 2843-2846.	1.2	35
41	Activation by Systemic Angiotensin II of Neurochemically Identified Neurons in Rat Hypothalamic Paraventricular Nucleus. Journal of Neuroendocrinology, 1998, 10, 453-459.	2.6	35
42	Characterization of the NT2â€derived neuronal and astrocytic cell lines as alternative in vitro models for primary human neurons and astrocytes. Journal of Neuroscience Research, 2014, 92, 1187-1198.	2.9	34
43	APOE and COMT polymorphisms are complementary biomarkers of status, stability, and transitions in normal aging and early mild cognitive impairment. Frontiers in Aging Neuroscience, 2014, 6, 236.	3.4	32
44	Prolactinâ€releasing peptide effects in the rat brain are mediated through the Neuropeptide FF receptor. European Journal of Neuroscience, 2009, 30, 1585-1593.	2.6	31
45	Aβ Inhibition of Ionic Conductance in Mouse Basal Forebrain Neurons Is Dependent upon the Cellular Prion Protein PrP ^C . Journal of Neuroscience, 2011, 31, 16292-16297.	3.6	30
46	Characterization of peptidergic efferents from the lateral parabrachial nucleus to identified neurons in the rat dorsal raphe nucleus. Journal of Chemical Neuroanatomy, 1992, 5, 367-373.	2.1	27
47	Neuropeptide FF and neuropeptide VF inhibit GABAergic neurotransmission in parvocellular neurons of the rat hypothalamic paraventricular nucleus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1872-R1880.	1.8	26
48	IDE (rs6583817) polymorphism and pulse pressure are independently and interactively associated with level and change in executive function in older adults Psychology and Aging, 2014, 29, 418-430.	1.6	26
49	ApoE and pulse pressure interactively influence level and change in the aging of episodic memory: Protective effects among ε2 carriers Neuropsychology, 2015, 29, 388-401.	1.3	26
50	Electrical stimulation of the central nucleus of the amygdala induces fos-like immunoreactivity in the hypothalamus of the rat: a quantitative study. Molecular Brain Research, 1994, 22, 333-340.	2.3	25
51	Ionic Mechanisms of Action of Neurotensin in Acutely Dissociated Neurons From the Diagonal Band of Broca of the Rat. Journal of Neurophysiology, 1999, 81, 234-246.	1.8	25
52	Human Amylin Actions on Rat Cholinergic Basal Forebrain Neurons: Antagonism of Beta-Amyloid Effects. Journal of Neurophysiology, 2003, 89, 2923-2930.	1.8	25
53	β-Amyloid enhances intracellular calcium rises mediated by repeated activation of intracellular calcium stores and nicotinic receptors in acutely dissociated rat basal forebrain neurons. Brain Cell Biology, 2007, 35, 173-186.	3.2	25
54	The Prion Protein Modulates A-type K+ Currents Mediated by Kv4.2 Complexes through Dipeptidyl Aminopeptidase-like Protein 6. Journal of Biological Chemistry, 2013, 288, 37241-37255.	3.4	25

Jack H Jhamandas

#	Article	IF	CITATIONS
55	Short amylin receptor antagonist peptides improve memory deficits in Alzheimer's disease mouse model. Scientific Reports, 2019, 9, 10942.	3.3	25
56	Cyclic AC253, a novel amylin receptor antagonist, improves cognitive deficits in a mouse model of Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2017, 3, 44-56.	3.7	24
57	Connectivity between brainstem autonomic structures and expression of c-fos following electrical stimulation of the central nucleus of the amygdala in rat. Cell and Tissue Research, 1996, 283, 367-374.	2.9	23
58	Amylin Receptor: A Common Pathophysiological Target in Alzheimer's Disease and Diabetes Mellitus. Frontiers in Aging Neuroscience, 2013, 5, 42.	3.4	23
59	Role of astrocytic glycolytic metabolism in Alzheimer's disease pathogenesis. Biogerontology, 2014, 15, 579-586.	3.9	23
60	New central projections of neuropeptide FF: colateral branching pathways in the brainstem and hypothalamus in the rat. Journal of Chemical Neuroanatomy, 2001, 21, 171-179.	2.1	22
61	Autonomic and neuroendocrine actions of adrenomedullin in the brain: mechanisms for homeostasis. Regulatory Peptides, 2003, 112, 33-40.	1.9	21
62	Vasopressin (VP) and neuropeptide FF (NPFF) systems in the normal and hypertensive human brainstem. Journal of Comparative Neurology, 2011, 519, 93-124.	1.6	21
63	Synergistic associations of catechol-O-methyltransferase and brain-derived neurotrophic factor with executive function in agingÂare selective and modified by apolipoprotein E. Neurobiology of Aging, 2015, 36, 249-256.	3.1	21
64	Amylin Receptor: A Potential Therapeutic Target for Alzheimer's Disease. Trends in Molecular Medicine, 2017, 23, 709-720.	6.7	21
65	Zinc modulation of ionic currents in the horizontal limb of the diagonal band of Broca. Neuroscience, 1999, 94, 785-795.	2.3	20
66	Distribution of the neuropeptide FF1 receptor (hFF1) in the human hypothalamus and surrounding basal forebrain structures: Immunohistochemical study. Journal of Comparative Neurology, 2004, 474, 487-503.	1.6	20
67	IDE (rs6583817) polymorphism and type 2 diabetes differentially modify executive function in older adults. Neurobiology of Aging, 2013, 34, 2208-2216.	3.1	20
68	GABA A receptor modulation by protein tyrosine kinase in the rat diagonal band of Broca. Brain Research, 1997, 775, 127-133.	2.2	19
69	Synaptic Actions of Neuropeptide FF in the Rat Parabrachial Nucleus: Interactions With Opioid Receptors. Journal of Neurophysiology, 2000, 84, 744-751.	1.8	19
70	Neuropeptide FF (NPFF) control of magnocellular neurosecretory cells of the rat hypothalamic paraventricular nucleus (PVN). Peptides, 2006, 27, 973-979.	2.4	19
71	Pramlintide Antagonizes Beta Amyloid (Aβ)- and Human Amylin-Induced Depression of Hippocampal Long-Term Potentiation. Molecular Neurobiology, 2017, 54, 748-754.	4.0	19
72	Central administration of neuropeptide FF (NPFF) causes increased neuronal activation and up-regulation of NPFF gene expression in the rat brainstem. Journal of Comparative Neurology, 2002, 447, 300-307.	1.6	16

JACK H JHAMANDAS

#	Article	IF	CITATIONS
73	Neuropeptide FF2 receptor distribution in the human brain. Peptides, 2008, 29, 1544-1553.	2.4	15
74	Neuropeptide FF distribution in the human and rat forebrain: A comparative immunohistochemical study. Journal of Comparative Neurology, 2006, 496, 572-593.	1.6	14
75	Histamine induces the production of matrix metalloproteinase-9 in human astrocytic cultures via H1-receptor subtype. Brain Structure and Function, 2016, 221, 1845-1860.	2.3	12
76	lonic mechanisms of action of prion protein fragment PrP(106–126) in rat basal forebrain neurons. Journal of Neuroscience Research, 2010, 88, 2217-2227.	2.9	11
77	The P's and Q's of cellular PrP-Aβ interactions. Prion, 2012, 6, 359-363.	1.8	10
78	Chemically defined collateral projections from the pons to the central nucleus of the amygdala and hypothalamic paraventricular nucleus in the rat. Cell and Tissue Research, 1994, 277, 289-295.	2.9	8
79	Genetic Depletion of Amylin/Calcitonin Receptors Improves Memory and Learning in Transgenic Alzheimer's Disease Mouse Models. Molecular Neurobiology, 2021, 58, 5369-5382.	4.0	7
80	Cyanidin-3-O-Glucoside improves the viability of human islet cells treated with amylin or Aβ1-42 in vitro. PLoS ONE, 2021, 16, e0258208.	2.5	7
81	18F-FESB: synthesis and automated radiofluorination of a novel18F-labeled pet tracer forβ-amyloid plaques. Journal of Labelled Compounds and Radiopharmaceuticals, 2005, 48, 983-996.	1.0	6
82	The hypothalamic neuropeptide <scp>FF</scp> network is impaired in hypertensive patients. Brain and Behavior, 2014, 4, 453-467.	2.2	5
83	Distinct morphological and electrophysiological properties of an elk prion peptide. Peptides, 2013, 40, 49-56.	2.4	4
84	Amylin and amylin receptors in Alzheimer's disease. , 2020, , 309-324.		1
85	Extracellular vesicles enriched with amylin receptor are cytoprotective against the Aß toxicity in vitro. PLoS ONE, 2022, 17, e0267164.	2.5	1
86	Amyloid β-Peptide and Central Cholinergic Neurons: Involvement in Normal Brain Function and Alzheimer's Disease Pathology. , 2007, , 159-178.		0