Jaeyoon Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4639797/publications.pdf Version: 2024-02-01

LAEVOON KIM

#	Article	IF	CITATIONS
1	Nanoparticle-based non-viral CRISPR delivery for enhanced immunotherapy. Chemical Communications, 2022, 58, 1860-1870.	4.1	5
2	Nanozyme-Based Enhanced Cancer Immunotherapy. Tissue Engineering and Regenerative Medicine, 2022, 19, 237-252.	3.7	24
3	Therapeutic Hydrogel Patch to Treat Atopic Dermatitis by Regulating Oxidative Stress. Nano Letters, 2022, 22, 2038-2047.	9.1	29
4	Injectable Hydrogel Based on Protein-Polyester Microporous Network as an Implantable Niche for Active Cell Recruitment. Pharmaceutics, 2022, 14, 709.	4.5	11
5	Anisotropic Hydrogels with a Multiscale Hierarchical Structure Exhibiting High Strength and Toughness for Mimicking Tendons. ACS Applied Materials & Interfaces, 2022, 14, 4479-4489.	8.0	28
6	ROS-Scavenging Therapeutic Hydrogels for Modulation of the Inflammatory Response. ACS Applied Materials & Material	8.0	63
7	Directed Assembly of Magnetic Nanoparticles into Centimeter Scale Wires for a 3D Cell Culture Platform. Chemistry of Materials, 2022, 34, 4437-4445.	6.7	3
8	Superstrong, superstiff, and conductive alginate hydrogels. Nature Communications, 2022, 13, .	12.8	112
9	Biomimetic Nanomaterial Strategies for Virus Targeting: Antiviral Therapies and Vaccines. Advanced Functional Materials, 2021, 31, 2008352.	14.9	25
10	Bioinspired Structural Composite Hydrogels with a Combination of High Strength, Stiffness, and Toughness. Advanced Functional Materials, 2021, 31, 2101095.	14.9	22
11	Recent Strategies for Strengthening and Stiffening Tough Hydrogels. Advanced NanoBiomed Research, 2021, 1, 2100026.	3.6	34
12	Dualâ€crosslinked hydrogels with metal coordination from novel coâ€polyaspartamide containing 1,2â€dihydroxy and imidazole pendant groups. Journal of Applied Polymer Science, 2021, 138, 51278.	2.6	6
13	Alternative Activation of Macrophages through Interleukin-13-Loaded Extra-Large-Pore Mesoporous Silica Nanoparticles Suppresses Experimental Autoimmune Encephalomyelitis. ACS Biomaterials Science and Engineering, 2021, 7, 4446-4453.	5.2	6
14	Facile Room-Temperature Synthesis of Cerium Carbonate and Cerium Oxide Nano- and Microparticles Using 1,1′-Carbonyldiimidazole and Imidazole in a Nonaqueous Solvent. ACS Omega, 2021, 6, 26477-26488.	3.5	5
15	Durable tetra-scale superhydrophobic coatings with virus-like nanoparticles for oil–water separations. Applied Surface Science, 2021, 570, 151088.	6.1	10
16	Degradation-regulated architecture of injectable smart hydrogels enhances humoral immune response and potentiates antitumor activity in human lung carcinoma. Biomaterials, 2020, 230, 119599.	11.4	79
17	Recent Progress in Autocatalytic Ceria Nanoparticles-Based Translational Research on Brain Diseases. ACS Applied Nano Materials, 2020, 3, 1043-1062.	5.0	27
18	Encapsulation of superparamagnetic iron oxide nanoparticles with polyaspartamide biopolymer for hyperthermia therapy. European Polymer Journal, 2020, 122, 109396.	5.4	14

#	Article	IF	CITATIONS
19	Hydrogel Patch: Adhesive Hydrogel Patch with Enhanced Strength and Adhesiveness to Skin for Transdermal Drug Delivery (Adv. Funct. Mater. 42/2020). Advanced Functional Materials, 2020, 30, 2070280.	14.9	7
20	Hollow Mesoporous Silica Nanoparticles with Extra-Large Mesopores for Enhanced Cancer Vaccine. ACS Applied Materials & Interfaces, 2020, 12, 34658-34666.	8.0	74
21	Adhesive Hydrogel Patch with Enhanced Strength and Adhesiveness to Skin for Transdermal Drug Delivery. Advanced Functional Materials, 2020, 30, 2004407.	14.9	142
22	Enhanced Cancer DNA Vaccine <i>via</i> Direct Transfection to Host Dendritic Cells Recruited in Injectable Scaffolds. ACS Nano, 2020, 14, 11623-11636.	14.6	40
23	Synthesis of hollow magnetic carbon microbeads using iron oleate@alginate core-shell hydrogels and their application to magnetic separation of organic dye. Korean Journal of Chemical Engineering, 2020, 37, 875-882.	2.7	1
24	Hydrogelâ€Based Artificial Muscles: Overview and Recent Progress. Advanced Intelligent Systems, 2020, 2, 1900135.	6.1	103
25	Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials, 2020, 239, 119859.	11.4	82
26	Therapeutic Contact Lens for Scavenging Excessive Reactive Oxygen Species on the Ocular Surface. ACS Nano, 2020, 14, 2483-2496.	14.6	68
27	Anisotropic Hybrid Hydrogels with Superior Mechanical Properties Reminiscent of Tendons or Ligaments. Advanced Functional Materials, 2019, 29, 1904342.	14.9	74
28	Cancer Immunotherapy: Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy (Adv.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
29	Mesoporous Silica Nanoparticles Doped with Gold Nanoparticles for Combined Cancer Immunotherapy and Photothermal Therapy. ACS Applied Bio Materials, 2019, 2, 3630-3638.	4.6	37
30	Anisotropic Hybrid Hydrogels: Anisotropic Hybrid Hydrogels with Superior Mechanical Properties Reminiscent of Tendons or Ligaments (Adv. Funct. Mater. 38/2019). Advanced Functional Materials, 2019, 29, 1970260.	14.9	1
31	Cover Image, Volume 11, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1549.	6.1	0
32	A 3D Macroporous Alginate Graphene Scaffold with an Extremely Slow Release of a Loaded Cargo for In Situ Longâ€Term Activation of Dendritic Cells. Advanced Healthcare Materials, 2019, 8, e1800571.	7.6	27
33	Bioinspired Design and Fabrication of Polymer Composite Films Consisting of a Strong and Stiff Organic Matrix and Microsized Inorganic Platelets. ACS Nano, 2019, 13, 2773-2785.	14.6	25
34	In Situ Magnetic Alignment and Cross-Linking of Injectable Microparticles into Centimeter-Scale Fibers for Efficient Myoblast Alignment and in Vivo Fiber Formation. Chemistry of Materials, 2019, 31, 5181-5189.	6.7	6
35	Effective systemic siRNA delivery using dual-layer protected long-circulating nanohydrogel containing an inorganic core. Biomaterials Science, 2019, 7, 3297-3306.	5.4	3
36	Hierarchically Porous Composite Scaffold Composed of SBA-15 Microrods and Reduced Graphene Oxide Functionalized with Cyclodextrin for Water Purification. ACS Applied Materials & Interfaces, 2019, 11, 15764-15772.	8.0	15

#	Article	IF	CITATIONS
37	Properties of immature and mature dendritic cells: phenotype, morphology, phagocytosis, and migration. RSC Advances, 2019, 9, 11230-11238.	3.6	81

- Macroporous Scaffolds: A 3D Macroporous Alginate Graphene Scaffold with an Extremely Slow Release of a Loaded Cargo for In Situ Long-Term Activation of Dendritic Cells (Adv. Healthcare Mater.) Tj ETQq0 0 07;gBT /Ov@lock 10 Tf 38

39	Ceria Nanoparticles Fabricated with 6â€Aminohexanoic Acid that Overcome Systemic Inflammatory Response Syndrome. Advanced Healthcare Materials, 2019, 8, e1801548.	7.6	28
40	Simultaneous delivery of DNA vaccine and hydrophobic adjuvant using reducible polyethylenimine-functionalized graphene oxide for activation of dendritic cells. Journal of Industrial and Engineering Chemistry, 2019, 80, 870-876.	5.8	16
41	Synthesis of high-quality carbon nanotubes by using monodisperse spherical mesoporous silica encapsulating iron oxide nanoparticles. Korean Journal of Chemical Engineering, 2019, 36, 157-165.	2.7	23
42	Mesoporous Silica as a Versatile Platform for Cancer Immunotherapy. Advanced Materials, 2019, 31, e1803953.	21.0	124
43	Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Materials, 2019, 19, 197-205.	18.0	54
44	Modularly engineered injectable hybrid hydrogels based on protein-polymer network as potent immunologic adjuvant in vivo. Biomaterials, 2019, 195, 100-110.	11.4	45
45	Functional mesoporous silica nanoparticles for bioâ€imaging applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1515.	6.1	75
46	Hydrophobicityâ€enhanced adhesion of novel biomimetic biocompatible polyaspartamide derivative glues. Polymer International, 2018, 67, 557-565.	3.1	13
47	A facile approach to enhance antigen response for personalized cancer vaccination. Nature Materials, 2018, 17, 528-534.	27.5	313
48	Three-Dimensional Macroporous Alginate Scaffolds Embedded with Akaganeite Nanorods for the Filter-Based High-Speed Preparation of Arsenic-Free Drinking Water. ACS Applied Nano Materials, 2018, 1, 1940-1948.	5.0	19
49	Sequential Targeted Delivery of Liposomes to Ischemic Tissues by Controlling Blood Vessel Permeability. ACS Biomaterials Science and Engineering, 2018, 4, 532-538.	5.2	7
50	Extra-Large Pore Mesoporous Silica Nanoparticles Enabling Co-Delivery of High Amounts of Protein Antigen and Toll-like Receptor 9 Agonist for Enhanced Cancer Vaccine Efficacy. ACS Central Science, 2018, 4, 484-492.	11.3	146
51	Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage. Nano Research, 2018, 11, 3582-3592.	10.4	32
52	Magnetically-Programmable Cylindrical Microparticles by Facile Reaping Method. Macromolecular Research, 2018, 26, 1108-1114.	2.4	3
53	Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage. Stroke, 2018, 49, 3030-3038.	2.0	37
54	Polyaspartamide Functionalized Catechol-Based Hydrogels Embedded with Silver Nanoparticles for Antimicrobial Properties. Polymers, 2018, 10, 1188.	4.5	10

#	Article	IF	CITATIONS
55	On-Demand Macroscale Delivery System Based on a Macroporous Cryogel with a High Drug Loading Capacity for Enhanced Cancer Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 3498-3505.	5.2	12
56	Smart vaccine delivery based on microneedle arrays decorated with ultra-pH-responsive copolymers for cancer immunotherapy. Biomaterials, 2018, 185, 13-24.	11.4	142
5 7	A Hydrogelâ€Film Casting to Fabricate Plateletâ€Reinforced Polymer Composite Films Exhibiting Superior Mechanical Properties. Small, 2018, 14, e1801042.	10.0	22
58	Self-assembled PEGylated albumin nanoparticles (SPAN) as a platform for cancer chemotherapy and imaging. Drug Delivery, 2018, 25, 1570-1578.	5.7	28
59	Direct Chemical Synthesis of Plasmonic Black Colloidal Gold Superparticles with Broadband Absorption Properties. Nano Letters, 2018, 18, 5927-5932.	9.1	34
60	Therapeutic Contact Lenses with Polymeric Vehicles for Ocular Drug Delivery: A Review. Materials, 2018, 11, 1125.	2.9	72
61	Scalable synthesis of carbon-embedded ordered macroporous titania spheres with structural colors. Korean Journal of Chemical Engineering, 2018, 35, 2138-2144.	2.7	5
62	Enhanced Cancer Vaccination by <i>In Situ</i> Nanomicelle-Generating Dissolving Microneedles. ACS Nano, 2018, 12, 9702-9713.	14.6	127
63	Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture. Journal of Colloid and Interface Science, 2017, 494, 389-396.	9.4	7
64	Highly interdigitated and porous architected ternary composite of SnS ₂ , g-C ₃ N ₄ , and reduced graphene oxide (rGO) as high performance lithium ion battery anodes. RSC Advances, 2017, 7, 3125-3135.	3.6	37
65	Chitosan Microgels Embedded with Catalase Nanozyme-Loaded Mesocellular Silica Foam for Glucose-Responsive Drug Delivery. ACS Biomaterials Science and Engineering, 2017, 3, 572-578.	5.2	58
66	Stabilized polymeric nanoparticle from amphiphilic mPEG- <i>b</i> -polyaspartamides containing â€~click' functional groups. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 798-804.	3.4	4
67	Mechanically Enhanced Hierarchically Porous Scaffold Composed of Mesoporous Silica for Host Immune Cell Recruitment. Advanced Healthcare Materials, 2017, 6, 1601160.	7.6	14
68	Adhesive and self-healing soft gel based on metal-coordinated imidazole-containing polyaspartamide. Colloid and Polymer Science, 2017, 295, 655-664.	2.1	18
69	Extra-Large Pore Mesoporous Silica Nanoparticles for Directing in Vivo M2 Macrophage Polarization by Delivering IL-4. Nano Letters, 2017, 17, 2747-2756.	9.1	173
70	Immune Cell Recruitment: Mechanically Enhanced Hierarchically Porous Scaffold Composed of Mesoporous Silica for Host Immune Cell Recruitment (Adv. Healthcare Mater. 8/2017). Advanced Healthcare Materials, 2017, 6, .	7.6	0
71	Polyaspartamide-based graft copolymers encapsulating iron oxide nanoparticles for imaging and fluorescence labelling of immune cells. Biomaterials Science, 2017, 5, 305-312.	5.4	16
72	Ultra-fine SnO2 nanoparticles doubly embedded in amorphous carbon and reduced graphene oxide (rGO) for superior lithium storage. Electrochimica Acta, 2017, 224, 201-210.	5.2	35

#	Article	IF	CITATIONS
73	Supertough Hybrid Hydrogels Consisting of a Polymer Doubleâ€Network and Mesoporous Silica Microrods for Mechanically Stimulated Onâ€Demand Drug Delivery. Advanced Functional Materials, 2017, 27, 1703826.	14.9	60
74	Colloidal Mesoporous Silica Nanoparticles as Strong Adhesives for Hydrogels and Biological Tissues. ACS Applied Materials & Interfaces, 2017, 9, 31469-31477.	8.0	49
75	Injectable Macroporous Ferrogel Microbeads with a High Structural Stability for Magnetically Actuated Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 31372-31380.	8.0	29
76	Carbohydrate-Functionalized rGO as an Effective Cancer Vaccine for Stimulating Antigen-Specific Cytotoxic T Cells and Inhibiting Tumor Growth. Chemistry of Materials, 2017, 29, 6883-6892.	6.7	30
77	Hydrogels: Supertough Hybrid Hydrogels Consisting of a Polymer Doubleâ€Network and Mesoporous Silica Microrods for Mechanically Stimulated Onâ€Demand Drug Delivery (Adv. Funct. Mater. 42/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
78	Bioadhesive Nanoaggregates Based on Polyaspartamide- <i>g</i> -C18/DOPA for Wound Healing. Biomacromolecules, 2017, 18, 2402-2409.	5.4	23
79	<scp>CO</scp> ₂ â€responsive swelling behavior and metalâ€ion adsorption properties in novel histamineâ€conjugated polyaspartamide hydrogel. Journal of Applied Polymer Science, 2016, 133, .	2.6	16
80	Iron Oxide@Polypyrrole Core–Shell Nanoparticles as the Platform for Photothermal Agent and Electrochemical Biosensor. Journal of Nanoscience and Nanotechnology, 2016, 16, 6942-6948.	0.9	4
81	The effect of surface modification of mesoporous silica micro-rod scaffold on immune cell activation and infiltration. Biomaterials, 2016, 83, 249-256.	11.4	85
82	Self-Position of Au NPs in Perovskite Solar Cells: Optical and Electrical Contribution. ACS Applied Materials & amp; Interfaces, 2016, 8, 449-454.	8.0	91
83	Ultrastable-Stealth Large Gold Nanoparticles with DNA Directed Biological Functionality. Langmuir, 2015, 31, 13773-13782.	3.5	29
84	Asymmetric nanoparticle assembly via simple mechanical pressing using relative hardness of materials. Materials Research Bulletin, 2015, 70, 424-429.	5.2	7
85	Designed fabrication of super-stiff, anisotropic hybrid hydrogels via linear remodeling of polymer networks and subsequent crosslinking. Journal of Materials Chemistry B, 2015, 3, 1479-1483.	5.8	63
86	Controlled Remodeling of Hydrogel Networks and Subsequent Crosslinking: A Strategy for Preparation of Alginate Hydrogels with Ultrahigh Density and Enhanced Mechanical Properties. Macromolecular Chemistry and Physics, 2015, 216, 914-921.	2.2	8
87	Facile, fine post-tuning of the longitudinal absorption wavelengths of pre-synthesized gold nanorods by introducing sulfide additives. RSC Advances, 2015, 5, 52459-52465.	3.6	7
88	A Biodegradation Study of SBA-15 Microparticles in Simulated Body Fluid and <i>in Vivo</i> . Langmuir, 2015, 31, 6457-6462.	3.5	69
89	Salt-assisted synthesis of mesostructured cellular foams consisting ofÂsmall primary particles with enhanced hydrothermal stability. Microporous and Mesoporous Materials, 2015, 212, 66-72.	4.4	3
90	Electrochemical Performances of Yttrium Doped Li ₃ V _{2–<i>X</i>} Y _{<i>X</i>} (PO ₄) ₃ /C Cathode Material for Lithium Secondary Battery. Journal of Nanoscience and Nanotechnology, 2015, 15, 8042-8047.	0.9	9

#	Article	IF	CITATIONS
91	Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nature Biotechnology, 2015, 33, 64-72.	17.5	436
92	Tailoring Dispersion and Aggregation of Au Nanoparticles in the BHJ Layer of Polymer Solar Cells: Plasmon Effects versus Electrical Effects. ChemSusChem, 2014, 7, 3452-3458.	6.8	12
93	Synthesis of hierarchical linearly assembled graphitic carbon nanoparticles via catalytic graphitization in SBA-15. Carbon, 2014, 75, 95-103.	10.3	28
94	Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. Applied Catalysis A: General, 2014, 476, 133-139.	4.3	73
95	Size-controlled synthesis of uniform akaganeite nanorods and their encapsulation in alginate microbeads for arsenic removal. RSC Advances, 2014, 4, 21777-21781.	3.6	15
96	Mesoporous silica-coated luminescent Eu ³⁺ doped GdVO ₄ nanoparticles for multimodal imaging and drug delivery. RSC Advances, 2014, 4, 45687-45695.	3.6	31
97	Ultrasound-triggered disruption and self-healing of reversibly cross-linked hydrogels for drug delivery and enhanced chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9762-9767.	7.1	372
98	Cellâ€Friendly Inverse Opalâ€Like Hydrogels for a Spatially Separated Coâ€Culture System. Macromolecular Rapid Communications, 2014, 35, 1578-1586.	3.9	38
99	Effect of Pore Structure of Macroporous Poly(Lactide- <i>co</i> -Glycolide) Scaffolds on the <i>in Vivo</i> Enrichment of Dendritic Cells. ACS Applied Materials & Interfaces, 2014, 6, 8505-8512.	8.0	38
100	Multi-lineage MSC Differentiation <i>via</i> Engineered Morphogen Fields. Journal of Dental Research, 2014, 93, 1250-1257.	5.2	24
101	Microfluidic fabrication of photo-responsive hydrogel capsules. Chemical Communications, 2013, 49, 1865.	4.1	42
102	Adipose Tissue Engineering Using Injectable, Oxidized Alginate Hydrogels. Tissue Engineering - Part A, 2012, 18, 737-743.	3.1	63
103	Asymmetric functionalization of colloidal dimer particles with gold nanoparticles. Chemical Communications, 2012, 48, 9056.	4.1	35
104	Surface Modification with Alginate-Derived Polymers for Stable, Protein-Repellent, Long-Circulating Gold Nanoparticles. ACS Nano, 2012, 6, 4796-4805.	14.6	53
105	Multifunctional Mesoporous Silica Nanocomposite Nanoparticles for Theranostic Applications. Accounts of Chemical Research, 2011, 44, 893-902.	15.6	676
106	Mesoporous Silica-Coated Hollow Manganese Oxide Nanoparticles as Positive <i>T</i> ₁ Contrast Agents for Labeling and MRI Tracking of Adipose-Derived Mesenchymal Stem Cells. Journal of the American Chemical Society, 2011, 133, 2955-2961.	13.7	491
107	In vivo modulation of dendritic cells by engineered materials: Towards new cancer vaccines. Nano Today, 2011, 6, 466-477.	11.9	63
108	Magnetic mesoporous materials for removal of environmental wastes. Journal of Hazardous Materials, 2011, 192, 1140-1147.	12.4	78

Jaeyoon Kim

#	Article	IF	CITATIONS
109	Targeted Delivery of Nanoparticles to Ischemic Muscle for Imaging and Therapeutic Angiogenesis. Nano Letters, 2011, 11, 694-700.	9.1	135
110	Multifunctional Capsuleâ€inâ€Capsules for Immunoprotection and Trimodal Imaging. Angewandte Chemie - International Edition, 2011, 50, 2317-2321.	13.8	77
111	Cover Picture: Multifunctional Capsule-in-Capsules for Immunoprotection and Trimodal Imaging (Angew. Chem. Int. Ed. 10/2011). Angewandte Chemie - International Edition, 2011, 50, 2189-2189.	13.8	0
112	Active scaffolds for on-demand drug and cell delivery. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 67-72.	7.1	630
113	Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice. Biomaterials, 2010, 31, 9048-9056.	11.4	27
114	Magnetic Nanocomposite Spheres Decorated with NiO Nanoparticles for a Magnetically Recyclable Protein Separation System. Advanced Materials, 2010, 22, 57-60.	21.0	147
115	Heterogeneous asymmetric Henry reaction using a chiral bis(oxazoline)-copper complex immobilized on magnetically separable mesocellular mesoporous silica support. Tetrahedron: Asymmetry, 2010, 21, 285-291.	1.8	48
116	Multifunctional Silverâ€Embedded Magnetic Nanoparticles as SERS Nanoprobes and Their Applications. Small, 2010, 6, 119-125.	10.0	184
117	Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery. Journal of the American Chemical Society, 2010, 132, 552-557.	13.7	687
118	Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials, 2009, 30, 3915-3925.	11.4	58
119	Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chemical Society Reviews, 2009, 38, 372-390.	38.1	981
120	Magnetically-separable and highly-stable enzyme system based on crosslinked enzyme aggregates shipped in magnetite-coated mesoporous silica. Journal of Materials Chemistry, 2009, 19, 7864.	6.7	44
121	High performance immunoassay using immobilized enzyme in nanoporous carbon. Analyst, The, 2009, 134, 926.	3.5	22
122	Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewandte Chemie - International Edition, 2008, 47, 8438-8441.	13.8	1,135
123	Inside Cover: Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery (Angew. Chem. Int. Ed. 44/2008). Angewandte Chemie - International Edition, 2008, 47, 8322-8322.	13.8	4
124	Designed Fabrication of Silica-Based Nanostructured Particle Systems for Nanomedicine Applications. Advanced Functional Materials, 2008, 18, 3745-3758.	14.9	382
125	Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer― Targeted Imaging and Magnetically Guided Drug Delivery. Advanced Materials, 2008, 20, 478-483.	21.0	476
126	Bioinspired Surface Immobilization of Hyaluronic Acid on Monodisperse Magnetite Nanocrystals for Targeted Cancer Imaging. Advanced Materials, 2008, 20, 4154-4157.	21.0	274

#	Article	IF	CITATIONS
127	Innentitelbild: Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery (Angew. Chem. 44/2008). Angewandte Chemie, 2008, 120, 8446-8446.	2.0	2
128	Wrap–bake–peelÂprocessÂforÂnanostructural transformation fromÂβ-FeOOHÂnanorodsÂto biocompatible iron oxide nanocapsules. Nature Materials, 2008, 7, 242-247.	27.5	401
129	A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angewandte Chemie - International Edition, 2007, 46, 7039-7043.	13.8	303
130	A Magnetically Recyclable Nanocomposite Catalyst for Olefin Epoxidation. Angewandte Chemie, 2007, 119, 7169-7173.	2.0	82
131	Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres. Journal of Materials Chemistry, 2006, 16, 2984.	6.7	46
132	Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals. Journal of the American Chemical Society, 2006, 128, 688-689.	13.7	834
133	Synthesis of new nanostructured carbon materials using silica nanostructured templates by Korean research groups. International Journal of Nanotechnology, 2006, 3, 253.	0.2	9
134	Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chemical Communications, 2006, , 463-465.	4.1	180
135	Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres. Angewandte Chemie - International Edition, 2006, 45, 4789-4793.	13.8	227
136	Designed Fabrication of Multifunctional Magnetic Gold Nanoshells and Their Application to Magnetic Resonance Imaging and Photothermal Therapy. Angewandte Chemie - International Edition, 2006, 45, 7754-7758.	13.8	475
137	Recent Progress in the Synthesis of Porous Carbon Materials. Advanced Materials, 2006, 18, 2073-2094.	21.0	1,917
138	Preparation of a Magnetically Switchable Bio-electrocatalytic System Employing Cross-linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam. Angewandte Chemie - International Edition, 2005, 44, 7427-7432.	13.8	137
139	Simple Fabrication of a Highly Sensitive and Fast Glucose Biosensor Using Enzymes Immobilized in Mesocellular Carbon Foam. Advanced Materials, 2005, 17, 2828-2833.	21.0	202
140	Simple Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates. Small, 2005, 1, 744-753.	10.0	184
141	A Magnetically Separable, Highly Stable Enzyme System Based on Nanocomposites of Enzymes and Magnetic Nanoparticles Shipped in Hierarchically Ordered, Mesocellular, Mesoporous Silica. Small, 2005, 1, 1203-1207.	10.0	106
142	Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites. Carbon, 2004, 42, 2711-2719.	10.3	134
143	areasElectronic supplementary information (ESI) available: isotherms and corresponding pore size distribution of the MCF silica template and poly(DVB)/MCF silica composite, IR spectrum of mesocellular polymer foam, and TEM image of the MCF silica template. See	4.1	18
144	Simple Synthesis of Uniform Mesoporous Carbons with Diverse Structures from Mesostructured Polymer/Silica Nanocomposites. Chemistry of Materials, 2004, 16, 3323-3330.	6.7	94

#	Article	IF	CITATIONS
145	A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbonElectronic supplementary information (ESI) available: experimental procedure and Figs. S1–S4. See http://www.rsc.org/suppdata/cc/b3/b301535a/. Chemical Communications, 2003, , 1138-1139.	4.1	100
146	Synthesis of carbon tubes with mesoporous wall structure using designed silica tubes as templatesElectronic supplementary information (ESI) available: TEM image of a carbon tube showing disordered mesoporous walls. See http://www.rsc.org/suppdata/cc/b2/b212336c/. Chemical Communications, 2003, , 652-653.	4.1	19
147	Nanoparticle-Based Tolerogenic Vaccines for the Treatment of Autoimmune Diseases: A Review. ACS Applied Nano Materials, 0, , .	5.0	4