
Pengxiang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4638538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 120, 851-918.	47.7	1,767
2	Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angewandte Chemie - International Edition, 2014, 53, 1756-1789.	13.8	793
3	Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordination Chemistry Reviews, 2015, 287, 114-136.	18.8	657
4	Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coordination Chemistry Reviews, 2017, 352, 306-327.	18.8	484
5	Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordination Chemistry Reviews, 2022, 454, 214340.	18.8	175
6	Catalysis by 1,2,3-triazole- and related transition-metal complexes. Coordination Chemistry Reviews, 2014, 272, 145-165.	18.8	148
7	Gold nanoparticles as sensors in the colorimetric and fluorescence detection of chemical warfare agents. Coordination Chemistry Reviews, 2016, 311, 75-84.	18.8	107
8	Highly Efficient and Selective Co@ZIFâ€8 Nanocatalyst for Hydrogen Release from Sodium Borohydride Hydrolysis. ChemCatChem, 2019, 11, 1643-1649.	3.7	61
9	Nanoscale zero-valent iron intercalated 2D titanium carbides for removal of Cr(VI) in aqueous solution and the mechanistic aspect. Journal of Hazardous Materials, 2020, 388, 121761.	12.4	61
10	Dendrimer-like core cross-linked micelle stabilized ultra-small gold nanoclusters as a robust catalyst for aerobic oxidation of α-hydroxy ketones in water. Green Chemistry, 2016, 18, 3647-3655.	9.0	38
11	Nanocopper-Doped Cross-Linked Lipoic Acid Nanoparticles for Morphology-Dependent Intracellular Catalysis. ACS Catalysis, 2018, 8, 5941-5946.	11.2	34
12	How a simple "clicked―PEGylated 1,2,3-triazole ligand stabilizes gold nanoparticles for multiple usage. Chemical Communications, 2013, 49, 3218.	4.1	33
13	Ca2+ induced 3D porous MXene gel for continuous removal of phosphate and uranium. Applied Surface Science, 2021, 570, 150804.	6.1	31
14	"Click―Chemistry Mildly Stabilizes Bifunctional Gold Nanoparticles for Sensing and Catalysis. Chemistry - A European Journal, 2014, 20, 8363-8369.	3.3	30
15	Stabilization of AuNPs by Monofunctional Triazole Linked to Ferrocene, Ferricenium, or Coumarin and Applications to Synthesis, Sensing, and Catalysis. Inorganic Chemistry, 2014, 53, 11802-11808.	4.0	28
16	Palladium Separation by Pd-Catalyzed Gel Formation via Alkyne Coupling. Chemistry of Materials, 2019, 31, 7386-7394.	6.7	28
17	Design, Synthesis and High HER Performances of 3D Ni/Mo Sulfide on Ni Foam. ChemCatChem, 2020, 12, 1647-1652.	3.7	18
18	Highly efficient methylene blue removal by TMAOH delaminated Ti3C2Tx MXene suspension and the mechanistic aspect. Separation and Purification Technology, 2022, 288, 120718.	7.9	18

Pengxiang Zhao

#	Article	IF	CITATIONS
19	Pd–Ru nanocatalysts derived from a Pd-induced aerogel for dramatic boosting of hydrogen release. Nanoscale, 2020, 12, 2345-2349.	5.6	14
20	Colorimetric detection for uranyl ions in water using vinylphosphonic acid functionalized gold nanoparticles based on smartphone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120748.	3.9	13
21	Covalent capture of supramolecular species in an aqueous solution of water-miscible small organic molecules. Physical Chemistry Chemical Physics, 2019, 21, 10477-10487.	2.8	12
22	Nitrilotriacetate-stabilized gold nanoparticles: a novel strategy for the colorimetric detection of Cr(<scp>iii</scp>)/Cr(<scp>vi</scp>) and the mechanistic aspects. Analytical Methods, 2017, 9, 2805-2811.	2.7	10
23	Development of a novel tridentate ligand for colorimetric detection of Mn 2+ based on AgNPs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 202, 244-251.	3.9	10
24	Parts per Million Level, Green, and Magnetically-recoverable Triazole Ligand-stabilized Au and Pd Nanoparticle Catalysts. RSC Advances, 2015, 5, 44018-44021.	3.6	9
25	Copper(I)â€Chelated Crossâ€Linked Cyclen Micelles as a Nanocatalyst for Azideâ€Alkyne Cycloaddition in Both Water and Cells. Advanced Synthesis and Catalysis, 2019, 361, 5057-5062.	4.3	9
26	Polyvinyl Alcohol (PVA)-based Hyper-crosslinked Polymers (HCPs) and Their Ultrahigh Iodine Adsorption Capacity. Chemistry Letters, 2020, 49, 1163-1166.	1.3	7
27	Effective colorimetric detection of Ni2+ using gold nanoparticles functionalized with phytate. Chemical Physics Letters, 2021, 784, 139101.	2.6	4
28	Damage indication of 2′, 7′-dichlorofluorescein for epoxy polymer and the effect of water on its damage indicating ability. E-Polymers, 2017, 17, 57-64.	3.0	3
29	Facile Synthesis of Iminodiacetate‣tabilized Gold Nanoparticles with Sensitive Detection of Cr ^{III} . European Journal of Inorganic Chemistry, 2017, 2017, 2479-2483.	2.0	3
30	Fast hydrogen detection by Pd(II)@alkyne-PVA/d-Ti3C2Tx composite at room temperature. Chemical Physics Letters, 2021, 776, 138678.	2.6	3