Honggang Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4638136/publications.pdf

Version: 2024-02-01

24978 22764 13,140 147 57 112 citations g-index h-index papers 150 150 150 13894 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends in Pharmacological Sciences, 2022, 43, 510-521.	4.0	16
2	Collagen-Binding Peptide-Enabled Supramolecular Hydrogel Design for Improved Organ Adhesion and Sprayable Therapeutic Delivery. Nano Letters, 2022, 22, 4182-4191.	4.5	16
3	Blockade of <i>Trpm7</i> in the Carotid Body area attenuated intermittent hypoxiaâ€induced Hypertension. FASEB Journal, 2022, 36, .	0.2	O
4	Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. Journal of Controlled Release, 2022, 348, 1028-1049.	4.8	12
5	Theranostic supramolecular polymers formed by the self-assembly of a metal-chelating prodrug. Biomaterials Science, 2021, 9, 463-470.	2.6	10
6	Electron-induced rapid crosslinking in supramolecular metal-peptide assembly and chemically responsive disaggregation for catalytic application. Chinese Journal of Catalysis, 2021, 42, 376-387.	6.9	3
7	Transform nanomedicine with breakthrough thinking?. Journal of Controlled Release, 2021, 330, 1130-1131.	4.8	1
8	Targeting ACE2 for COVID-19 Therapy: Opportunities and Challenges. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 416-425.	1.4	68
9	A Twoâ€Pronged Pulmonary Gene Delivery Strategy: A Surfaceâ€Modified Fullerene Nanoparticle and a Hypotonic Vehicle. Angewandte Chemie - International Edition, 2021, 60, 15225-15229.	7.2	17
10	A Twoâ€Pronged Pulmonary Gene Delivery Strategy: A Surfaceâ€Modified Fullerene Nanoparticle and a Hypotonic Vehicle. Angewandte Chemie, 2021, 133, 15353-15357.	1.6	0
11	Pharmacological and Genetic Blockade of <i>Trpm7 < /i>in the Carotid Body Treats Obesity-Induced Hypertension. Hypertension, 2021, 78, 104-114.</i>	1.3	10
12	Valsartan <scp>nanoâ€filaments</scp> alter mitochondrial energetics and promote faster healing in diabetic rat wounds. Wound Repair and Regeneration, 2021, 29, 927-937.	1.5	6
13	Therapeutic supramolecular tubustecan hydrogel combined with checkpoint inhibitor elicits immunity to combat cancer. Biomaterials, 2021, 279, 121182.	5.7	22
14	Propagation-Instigated Self-Limiting Polymerization of Multiarmed Amphiphiles into Finite Supramolecular Polymers. Journal of the American Chemical Society, 2021, 143, 18446-18453.	6.6	14
15	Strategies to Modulate the Blood-Brain Barrier for Directed Brain Tumor Targeting. Neuromethods, 2021, , 79-108.	0.2	1
16	Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1586.	3.3	60
17	Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. Journal of Controlled Release, 2020, 319, 311-321.	4.8	53
18	Adaptable antibody Nanoworms designed for non-Hodgkin lymphoma. Biomaterials, 2020, 262, 120338.	5.7	9

#	Article	IF	CITATIONS
19	Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nature Biomedical Engineering, 2020, 4, 1090-1101.	11.6	168
20	Supramolecular Tubustecan Hydrogel as Chemotherapeutic Carrier to Improve Tumor Penetration and Local Treatment Efficacy. ACS Nano, 2020, 14, 10083-10094.	7.3	55
21	Selective Capture and Recovery of Monoclonal Antibodies by Self-Assembling Supramolecular Polymers of High Affinity for Protein Binding. Nano Letters, 2020, 20, 6957-6965.	4.5	16
22	Supramolecular prodrug hydrogelator as an immune booster for checkpoint blocker–based immunotherapy. Science Advances, 2020, 6, eaaz8985.	4.7	93
23	A peptide for transcellular cargo delivery: Structure-function relationship and mechanism of action. Journal of Controlled Release, 2020, 324, 633-643.	4.8	14
24	Controlling the properties of the micellar and gel phase by varying the counterion in functionalised-dipeptide systems. Chemical Communications, 2020, 56, 4094-4097.	2.2	26
25	Isotopic Control over Self-Assembly in Supramolecular Gels. Langmuir, 2020, 36, 8626-8631.	1.6	18
26	Using Small-Angle Scattering and Contrast Matching to Understand Molecular Packing in Low Molecular Weight Gels. Matter, 2020, 2, 764-778.	5.0	49
27	The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4518-4526.	3.3	58
28	Supramolecular Design of Unsymmetric Reverse Bolaamphiphiles for Cellâ€Sensitive Hydrogel Degradation and Drug Release. Angewandte Chemie, 2020, 132, 4464-4472.	1.6	46
29	Supramolecular Design of Unsymmetric Reverse Bolaamphiphiles for Cellâ€Sensitive Hydrogel Degradation and Drug Release. Angewandte Chemie - International Edition, 2020, 59, 4434-4442.	7.2	60
30	Using chirality to influence supramolecular gelation. Chemical Science, 2019, 10, 7801-7806.	3.7	40
31	Interface-Enrichment-Induced Instability and Drug-Loading-Enhanced Stability in Inhalable Delivery of Supramolecular Filaments. ACS Nano, 2019, 13, 12957-12968.	7.3	21
32	Macrocyclization of a Class of Camptothecin Analogues into Tubular Supramolecular Polymers. Journal of the American Chemical Society, 2019, 141, 17107-17111.	6.6	42
33	Kinetic Control in Assembly of Plasmid DNA/Polycation Complex Nanoparticles. ACS Nano, 2019, 13, 10161-10178.	7.3	35
34	Layer-by-layer preparation of polyelectrolyte multilayer nanocapsules <i>via</i> crystallized miniemulsions. Chemical Communications, 2019, 55, 1267-1270.	2.2	17
35	Photo-induced formation of organic nanoparticles possessing enhanced affinities for complexing nerve agent mimics. Chemical Communications, 2019, 55, 1987-1990.	2.2	13
36	Sequence isomeric giant surfactants with distinct self-assembly behaviors in solution. Chemical Communications, 2019, 55, 636-639.	2.2	18

3

#	Article	IF	Citations
37	Fine-Tuning the Linear Release Rate of Paclitaxel-Bearing Supramolecular Filament Hydrogels through Molecular Engineering. ACS Nano, 2019, 13, 7780-7790.	7.3	60
38	Paclitaxel-Promoted Supramolecular Polymerization of Peptide Conjugates. Journal of the American Chemical Society, 2019, 141, 11997-12004.	6.6	61
39	Linearâ€Dendritic Alternating Copolymers. Angewandte Chemie - International Edition, 2019, 58, 10572-10576.	7.2	12
40	Linearâ€Dendritic Alternating Copolymers. Angewandte Chemie, 2019, 131, 10682-10686.	1.6	4
41	On the encapsulation and assembly of anticancer drugs in a cooperative fashion. Chemical Science, 2019, 10, 5678-5685.	3.7	16
42	Crafting Polymeric and Peptidic Hydrogels for Improved Wound Healing. Advanced Healthcare Materials, 2019, 8, e1900104.	3.9	70
43	Emerging biomaterials for downstream manufacturing of therapeutic proteins. Acta Biomaterialia, 2019, 95, 73-90.	4.1	35
44	Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. Journal of Physical Chemistry B, 2019, 123, 10582-10593.	1.2	9
45	Lightâ€Triggered Transformation of Molecular Baskets into Organic Nanoparticles. Chemistry - A European Journal, 2019, 25, 273-279.	1.7	10
46	Self-Assembling Supramolecular Nanostructures for Drug Delivery. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 1-25.	0.1	3
47	Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chemical Society Reviews, 2018, 47, 3490-3529.	18.7	127
48	Multifunctional Self-Assembling Peptide-Based Nanostructures for Targeted Intracellular Delivery: Design, Physicochemical Characterization, and Biological Assessment. Methods in Molecular Biology, 2018, 1758, 11-26.	0.4	6
49	Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G. Biomaterials, 2018, 178, 448-457.	5.7	14
50	Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1479.	3.3	51
51	Isomeric control of the mechanical properties of supramolecular filament hydrogels. Biomaterials Science, 2018, 6, 216-224.	2.6	6
52	Transparent-to-dark photo- and electrochromic gels. Communications Chemistry, 2018, 1, .	2.0	17
53	Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioengineering and Translational Medicine, 2018, 3, 102-123.	3.9	18
54	Rational design of multimodal therapeutic nanosystems for effective inhibition of tumor growth and metastasis. Acta Biomaterialia, 2018, 77, 240-254.	4.1	10

#	Article	IF	CITATIONS
55	Synthesis of Mikto-Arm Star Peptide Conjugates. Methods in Molecular Biology, 2018, 1777, 193-207.	0.4	O
56	Self-assembling biomaterials for theranostic applications. , 2018, , 533-561.		3
57	Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Advanced Drug Delivery Reviews, 2017, 110-111, 112-126.	6.6	366
58	One-Component Supramolecular Filament Hydrogels as Theranostic Label-Free Magnetic Resonance Imaging Agents. ACS Nano, 2017, 11, 797-805.	7. 3	95
59	Synergistic antitumor activity of a self-assembling camptothecin and capecitabine hybrid prodrug for improved efficacy. Journal of Controlled Release, 2017, 263, 102-111.	4.8	51
60	Solute-Triggered Morphological Transitions of an Amphiphilic Heterografted Brush Copolymer as a Single-Molecule Drug Carrier. Macromolecules, 2017, 50, 2201-2206.	2.2	46
61	Molecular design and synthesis of self-assembling camptothecin drug amphiphiles. Acta Pharmacologica Sinica, 2017, 38, 874-884.	2.8	33
62	Peptide-templated noble metal catalysts: syntheses and applications. Chemical Science, 2017, 8, 3310-3324.	3.7	73
63	Protease-Sensitive Nanomaterials for Cancer Therapeutics and Imaging. Industrial & Discrete Engineering Chemistry Research, 2017, 56, 5761-5777.	1.8	55
64	Drying Affects the Fiber Network in Low Molecular Weight Hydrogels. Biomacromolecules, 2017, 18, 3531-3540.	2.6	92
65	Enzymatic activation of cell-penetrating peptides in self-assembled nanostructures triggers fibre-to-micelle morphological transition. Chemical Communications, 2017, 53, 7037-7040.	2.2	31
66	Peptides and Peptide Conjugates in Medicine. Advanced Drug Delivery Reviews, 2017, 110-111, 1-2.	6.6	11
67	A Noncrystallization Approach toward Uniform Thylakoids-like 2D "Nano-coins―and Their Grana-like 3D Suprastructures. Journal of the American Chemical Society, 2017, 139, 5883-5889.	6.6	52
68	Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. Journal of Controlled Release, 2017, 267, 100-118.	4.8	119
69	Self-assembling prodrugs. Chemical Society Reviews, 2017, 46, 6638-6663.	18.7	271
70	Supramolecular medicine. Chemical Society Reviews, 2017, 46, 6430-6432.	18.7	77
71	Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1194-1211.	2.0	7
72	Coarse-grained molecular dynamics studies of the structure and stability of peptide-based drug amphiphile filaments. Soft Matter, 2017, 13, 7721-7730.	1.2	16

#	Article	IF	CITATIONS
73	Conformation Preservation of \hat{l} ±-Helical Peptides within Supramolecular Filamentous Assemblies. Biomacromolecules, 2017, 18, 3611-3620.	2.6	12
74	Bifunctional Elastin-like Polypeptide Nanoparticles Bind Rapamycin and Integrins and Suppress Tumor Growth in Vivo. Bioconjugate Chemistry, 2017, 28, 2715-2728.	1.8	32
75	Opening a Can of Worm(â€like Micelle)s: The Effect of Temperature of Solutions of Functionalized Dipeptides. Angewandte Chemie, 2017, 129, 10603-10606.	1.6	30
76	Opening a Can of Worm(â€like Micelle)s: The Effect of Temperature of Solutions of Functionalized Dipeptides. Angewandte Chemie - International Edition, 2017, 56, 10467-10470.	7.2	62
77	Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents. Theranostics, 2017, 7, 2003-2014.	4.6	52
78	Nanostructure-Based Theranostic Systems. Theranostics, 2016, 6, 1274-1276.	4.6	19
79	Progress in the Development of Nanotheranostic Systems. Theranostics, 2016, 6, 915-917.	4.6	24
80	Supramolecular Crafting of Self-Assembling Camptothecin Prodrugs with Enhanced Efficacy against Primary Cancer Cells. Theranostics, 2016, 6, 1065-1074.	4.6	56
81	Functional nanoparticles for magnetic resonance imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 814-841.	3.3	63
82	Spatiotemporal control of the creation and immolation of peptide assemblies. Coordination Chemistry Reviews, 2016, 320-321, 2-17.	9.5	23
83	Peptideâ€based supramolecular hydrogels for delivery of biologics. Bioengineering and Translational Medicine, 2016, 1, 306-322.	3.9	109
84	Crosslinked polymer nanocapsules. Polymer International, 2016, 65, 351-361.	1.6	26
85	Electrostatic-Driven Lamination and Untwisting of β-Sheet Assemblies. ACS Nano, 2016, 10, 880-888.	7.3	133
86	Tuning Cellular Uptake of Molecular Probes by Rational Design of Their Assembly into Supramolecular Nanoprobes. Journal of the American Chemical Society, 2016, 138, 3533-3540.	6.6	125
87	π–π Stacking Mediated Chirality in Functional Supramolecular Filaments. Macromolecules, 2016, 49, 994-1001.	2.2	41
88	Building nanostructures with drugs. Nano Today, 2016, 11, 13-30.	6.2	122
89	Targeting Tumors with Small Molecule Peptides. Current Cancer Drug Targets, 2016, 16, 489-508.	0.8	22
90	Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Soft Matter, 2015, 11, 4235-4241.	1.2	143

#	Article	IF	CITATIONS
91	Dual Peptide Conjugation Strategy for Improved Cellular Uptake and Mitochondria Targeting. Bioconjugate Chemistry, 2015, 26, 71-77.	1.8	72
92	Molecularly Engineered Selfâ€Assembling Membranes for Cellâ€Mediated Degradation. Advanced Healthcare Materials, 2015, 4, 602-612.	3.9	20
93	Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomaterialia, 2015, 14, 115-124.	4.1	116
94	Activatable nanoprobes for biomolecular detection. Current Opinion in Biotechnology, 2015, 34, 171-179.	3.3	26
95	The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano, 2015, 9, 7195-7206.	7.3	552
96	Design and assembly of supramolecular dual-modality nanoprobes. Nanoscale, 2015, 7, 9462-9466.	2.8	16
97	Enzyme-Specific Doxorubicin Drug Beacon as Drug-Resistant Theranostic Molecular Probes. ACS Macro Letters, 2015, 4, 552-555.	2.3	43
98	One-component nanomedicine. Journal of Controlled Release, 2015, 219, 383-395.	4.8	122
99	Nanoparticle approaches to combating drug resistance. Future Medicinal Chemistry, 2015, 7, 1503-1510.	1.1	24
100	Phase Transition of Spindle-Associated Protein Regulate Spindle Apparatus Assembly. Cell, 2015, 163, 108-122.	13.5	243
101	Supramolecular nanostructures as drug carriers. Current Opinion in Chemical Engineering, 2015, 7, 75-83.	3.8	58
102	Tear-mediated delivery of nanoparticles through transcytosis of the lacrimal gland. Journal of Controlled Release, 2015, 208, 2-13.	4.8	17
103	Multiwalled Nanotubes Formed by Catanionic Mixtures of Drug Amphiphiles. ACS Nano, 2014, 8, 12690-12700.	7.3	98
104	Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8131-8141.	2.9	43
105	Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells. Journal of Controlled Release, 2014, 191, 4-14.	4.8	46
106	Triggered Sorting and Coâ€Assembly of Genetically Engineered Protein Microdomains in the Cytoplasm. Advanced Materials, 2014, 26, 449-454.	11.1	15
107	Linker-determined drug release mechanism of free camptothecin from self-assembling drug amphiphiles. Chemical Communications, 2014, 50, 6039-6042.	2.2	95
108	Amino Acid Sequence in Constitutionally Isomeric Tetrapeptide Amphiphiles Dictates Architecture of One-Dimensional Nanostructures. Journal of the American Chemical Society, 2014, 136, 12461-12468.	6.6	249

#	Article	IF	Citations
109	A Hybrid Protein–Polymer Nanoworm Potentiates Apoptosis Better than a Monoclonal Antibody. ACS Nano, 2014, 8, 2064-2076.	7.3	54
110	An amphipathic alpha-helical peptide from apolipoprotein A1 stabilizes protein polymer vesicles. Journal of Controlled Release, 2014, 191, 15-23.	4.8	17
111	Rational Design of MMP Degradable Peptide-Based Supramolecular Filaments. Biomacromolecules, 2014, 15, 1419-1427.	2.6	65
112	Multimeric Disintegrin Protein Polymer Fusions That Target Tumor Vasculature. Biomacromolecules, 2014, 15, 2347-2358.	2.6	15
113	Enhanced Cellular Entry and Efficacy of Tat Conjugates by Rational Design of the Auxiliary Segment. Molecular Pharmaceutics, 2014, 11, 964-973.	2.3	50
114	Controlled release of free doxorubicin from peptide–drug conjugates by drug loading. Journal of Controlled Release, 2014, 191, 123-130.	4.8	92
115	Self-assembly of natural and synthetic drug amphiphiles into discrete supramolecular nanostructures. Faraday Discussions, 2013, 166, 285.	1.6	78
116	Supramolecular filaments containing a fixed 41% paclitaxel loading. Chemical Communications, 2013, 49, 4968.	2.2	124
117	Self-assembly of biomolecular soft matter. Faraday Discussions, 2013, 166, 9.	1.6	84
118	Supramolecular Nanostructures Formed by Anticancer Drug Assembly. Journal of the American Chemical Society, 2013, 135, 2907-2910.	6.6	477
119	Plasmidâ€Templated Shape Control of Condensed DNA–Block Copolymer Nanoparticles. Advanced Materials, 2013, 25, 227-232.	11.1	112
120	Cellular Uptake and Cytotoxicity of Drug–Peptide Conjugates Regulated by Conjugation Site. Bioconjugate Chemistry, 2013, 24, 604-613.	1.8	92
121	Self-Assembled Tat Nanofibers as Effective Drug Carrier and Transporter. ACS Nano, 2013, 7, 5965-5977.	7.3	177
122	Design and Construction of Supramolecular Nanobeacons for Enzyme Detection. ACS Nano, 2013, 7, 4924-4932.	7.3	78
123	Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. Journal of Controlled Release, 2013, 171, 330-338.	4.8	83
124	Tuning Nanostructure Dimensions with Supramolecular Twisting. Journal of Physical Chemistry B, 2013, 117, 4604-4610.	1.2	76
125	Supramolecular Polymers Formed by ABC Miktoarm Star Peptides. ACS Macro Letters, 2013, 2, 1088-1094.	2.3	35
126	One-Step Fabrication of Self-Assembled Peptide Thin Films with Highly Dispersed Noble Metal Nanoparticles. Langmuir, 2013, 29, 16051-16057.	1.6	35

#	Article	IF	CITATIONS
127	Gene Delivery: Plasmidâ€∓emplated Shape Control of Condensed DNA–Block Copolymer Nanoparticles (Adv. Mater. 2/2013). Advanced Materials, 2013, 25, 154-154.	11.1	O
128	Supramolecular control of self-assembling terthiophene–peptide conjugates through the amino acid side chain. Chemical Communications, 2012, 48, 9711.	2.2	44
129	Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells. Acta Biomaterialia, 2012, 8, 2456-2465.	4.1	56
130	Multicompartment Polymer Nanostructures with Ratiometric Dual-Emission pH-Sensitivity. Journal of the American Chemical Society, 2011, 133, 8534-8543.	6.6	76
131	Selfâ€assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers, 2010, 94, 1-18.	1.2	1,317
132	Semiconducting Nanowires from Hairpin-Shaped Self-Assembling Sexithiophenes. Journal of Physical Chemistry B, 2010, 114, 14778-14786.	1.2	74
133	Spontaneous and X-ray–Triggered Crystallization at Long Range in Self-Assembling Filament Networks. Science, 2010, 327, 555-559.	6.0	159
134	Tuning Supramolecular Rigidity of Peptide Fibers through Molecular Structure. Journal of the American Chemical Society, 2010, 132, 6041-6046.	6.6	367
135	Self-Assembly of Giant Peptide Nanobelts. Nano Letters, 2009, 9, 945-951.	4.5	412
136	Origins of toroidal micelle formation through charged triblock copolymer self-assembly. Soft Matter, 2009, 5, 1269-1278.	1.2	102
137	Self-assembly of amphiphiles with terthiophene and tripeptide segments into helical nanostructures. Tetrahedron, 2008, 64, 8504-8514.	1.0	69
138	Helix self-assembly through the coiling of cylindrical micelles. Soft Matter, 2008, 4, 90-93.	1.2	163
139	Quadruple Helix Formation of a Photoresponsive Peptide Amphiphile and Its Light-Triggered Dissociation into Single Fibers. Journal of the American Chemical Society, 2008, 130, 2946-2947.	6.6	197
140	Controlled Stacking of Charged Block Copolymer Micelles. Langmuir, 2007, 23, 4689-4694.	1.6	49
141	Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. Soft Matter, 2007, 3, 945.	1.2	187
142	Block Copolymer Assembly via Kinetic Control. Science, 2007, 317, 647-650.	6.0	969
143	Controlling Micellar Structure of Amphiphilic Charged Triblock Copolymers in Dilute Solution via Coassembly with Organic Counterions of Different Spacer Lengths. Macromolecules, 2006, 39, 6599-6607.	2.2	99
144	Preparation and Characterization of Synthetic Polypeptide Single Crystals with Controlled Thickness. Macromolecules, 2005, 38, 7371-7377.	2.2	28

#	Article	IF	CITATIONS
145	Disk Morphology and Disk-to-Cylinder Tunability of Poly(Acrylic Acid)-b-Poly(Methyl) Tj ETQq1 1 0.784314 rgBT	/Overlock	10 Tf 50 742
146	Unique Toroidal Morphology from Composition and Sequence Control of Triblock Copolymers. Journal of the American Chemical Society, 2005, 127, 8592-8593.	6.6	140
147	Toroidal Triblock Copolymer Assemblies. Science, 2004, 306, 94-97.	6.0	740