Honggang Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4638136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selfâ€∎ssembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Biopolymers, 2010, 94, 1-18.	1.2	1,317
2	Block Copolymer Assembly via Kinetic Control. Science, 2007, 317, 647-650.	6.0	969
3	Toroidal Triblock Copolymer Assemblies. Science, 2004, 306, 94-97.	6.0	740
4	The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano, 2015, 9, 7195-7206.	7.3	552
5	Supramolecular Nanostructures Formed by Anticancer Drug Assembly. Journal of the American Chemical Society, 2013, 135, 2907-2910.	6.6	477
6	Self-Assembly of Giant Peptide Nanobelts. Nano Letters, 2009, 9, 945-951.	4.5	412
7	Tuning Supramolecular Rigidity of Peptide Fibers through Molecular Structure. Journal of the American Chemical Society, 2010, 132, 6041-6046.	6.6	367
8	Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Advanced Drug Delivery Reviews, 2017, 110-111, 112-126.	6.6	366
9	Self-assembling prodrugs. Chemical Society Reviews, 2017, 46, 6638-6663.	18.7	271
10	Amino Acid Sequence in Constitutionally Isomeric Tetrapeptide Amphiphiles Dictates Architecture of One-Dimensional Nanostructures. Journal of the American Chemical Society, 2014, 136, 12461-12468.	6.6	249
11	Phase Transition of Spindle-Associated Protein Regulate Spindle Apparatus Assembly. Cell, 2015, 163, 108-122.	13.5	243
12	Quadruple Helix Formation of a Photoresponsive Peptide Amphiphile and Its Light-Triggered Dissociation into Single Fibers. Journal of the American Chemical Society, 2008, 130, 2946-2947.	6.6	197
13	Elucidating the assembled structure of amphiphiles in solution via cryogenic transmission electron microscopy. Soft Matter, 2007, 3, 945.	1.2	187
14	Self-Assembled Tat Nanofibers as Effective Drug Carrier and Transporter. ACS Nano, 2013, 7, 5965-5977.	7.3	177
15	Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nature Biomedical Engineering, 2020, 4, 1090-1101.	11.6	168
16	Helix self-assembly through the coiling of cylindrical micelles. Soft Matter, 2008, 4, 90-93.	1.2	163
17	Spontaneous and X-ray–Triggered Crystallization at Long Range in Self-Assembling Filament Networks. Science, 2010, 327, 555-559.	6.0	159
18	Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Soft Matter, 2015, 11, 4235-4241.	1.2	143

Honggang Cui

#	Article	IF	CITATIONS
19	Unique Toroidal Morphology from Composition and Sequence Control of Triblock Copolymers. Journal of the American Chemical Society, 2005, 127, 8592-8593.	6.6	140
20	Electrostatic-Driven Lamination and Untwisting of Î ² -Sheet Assemblies. ACS Nano, 2016, 10, 880-888.	7.3	133
21	Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chemical Society Reviews, 2018, 47, 3490-3529.	18.7	127
22	Tuning Cellular Uptake of Molecular Probes by Rational Design of Their Assembly into Supramolecular Nanoprobes. Journal of the American Chemical Society, 2016, 138, 3533-3540.	6.6	125
23	Supramolecular filaments containing a fixed 41% paclitaxel loading. Chemical Communications, 2013, 49, 4968.	2.2	124
24	One-component nanomedicine. Journal of Controlled Release, 2015, 219, 383-395.	4.8	122
25	Building nanostructures with drugs. Nano Today, 2016, 11, 13-30.	6.2	122
26	Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. Journal of Controlled Release, 2017, 267, 100-118.	4.8	119
27	Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomaterialia, 2015, 14, 115-124.	4.1	116
28	Disk Morphology and Disk-to-Cylinder Tunability of Poly(Acrylic Acid)-b-Poly(Methyl) Tj ETQq0 0 0 rgBT /Overloc	₹ 10 Tf 50 1.6	382 Td (Acryl
29	Plasmidâ€Templated Shape Control of Condensed DNA–Block Copolymer Nanoparticles. Advanced Materials, 2013, 25, 227-232.	11.1	112
30	Peptideâ€based supramolecular hydrogels for delivery of biologics. Bioengineering and Translational Medicine, 2016, 1, 306-322.	3.9	109
31	Origins of toroidal micelle formation through charged triblock copolymer self-assembly. Soft Matter, 2009, 5, 1269-1278.	1.2	102
32	Controlling Micellar Structure of Amphiphilic Charged Triblock Copolymers in Dilute Solution via Coassembly with Organic Counterions of Different Spacer Lengths. Macromolecules, 2006, 39, 6599-6607.	2.2	99
33	Multiwalled Nanotubes Formed by Catanionic Mixtures of Drug Amphiphiles. ACS Nano, 2014, 8, 12690-12700.	7.3	98
34	Linker-determined drug release mechanism of free camptothecin from self-assembling drug amphiphiles. Chemical Communications, 2014, 50, 6039-6042.	2.2	95
35	One-Component Supramolecular Filament Hydrogels as Theranostic Label-Free Magnetic Resonance Imaging Agents. ACS Nano, 2017, 11, 797-805.	7.3	95
36	Supramolecular prodrug hydrogelator as an immune booster for checkpoint blocker–based immunotherapy. Science Advances, 2020, 6, eaaz8985.	4.7	93

#	Article	IF	CITATIONS
37	Cellular Uptake and Cytotoxicity of Drug–Peptide Conjugates Regulated by Conjugation Site. Bioconjugate Chemistry, 2013, 24, 604-613.	1.8	92
38	Controlled release of free doxorubicin from peptide–drug conjugates by drug loading. Journal of Controlled Release, 2014, 191, 123-130.	4.8	92
39	Drying Affects the Fiber Network in Low Molecular Weight Hydrogels. Biomacromolecules, 2017, 18, 3531-3540.	2.6	92
40	Self-assembly of biomolecular soft matter. Faraday Discussions, 2013, 166, 9.	1.6	84
41	Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. Journal of Controlled Release, 2013, 171, 330-338.	4.8	83
42	Self-assembly of natural and synthetic drug amphiphiles into discrete supramolecular nanostructures. Faraday Discussions, 2013, 166, 285.	1.6	78
43	Design and Construction of Supramolecular Nanobeacons for Enzyme Detection. ACS Nano, 2013, 7, 4924-4932.	7.3	78
44	Supramolecular medicine. Chemical Society Reviews, 2017, 46, 6430-6432.	18.7	77
45	Multicompartment Polymer Nanostructures with Ratiometric Dual-Emission pH-Sensitivity. Journal of the American Chemical Society, 2011, 133, 8534-8543.	6.6	76
46	Tuning Nanostructure Dimensions with Supramolecular Twisting. Journal of Physical Chemistry B, 2013, 117, 4604-4610.	1.2	76
47	Semiconducting Nanowires from Hairpin-Shaped Self-Assembling Sexithiophenes. Journal of Physical Chemistry B, 2010, 114, 14778-14786.	1.2	74
48	Peptide-templated noble metal catalysts: syntheses and applications. Chemical Science, 2017, 8, 3310-3324.	3.7	73
49	Dual Peptide Conjugation Strategy for Improved Cellular Uptake and Mitochondria Targeting. Bioconjugate Chemistry, 2015, 26, 71-77.	1.8	72
50	Crafting Polymeric and Peptidic Hydrogels for Improved Wound Healing. Advanced Healthcare Materials, 2019, 8, e1900104.	3.9	70
51	Self-assembly of amphiphiles with terthiophene and tripeptide segments into helical nanostructures. Tetrahedron, 2008, 64, 8504-8514.	1.0	69
52	Targeting ACE2 for COVID-19 Therapy: Opportunities and Challenges. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 416-425.	1.4	68
53	Rational Design of MMP Degradable Peptide-Based Supramolecular Filaments. Biomacromolecules, 2014, 15, 1419-1427.	2.6	65
54	Functional nanoparticles for magnetic resonance imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 814-841.	3.3	63

#	Article	IF	CITATIONS
55	Opening a Can of Worm(â€like Micelle)s: The Effect of Temperature of Solutions of Functionalized Dipeptides. Angewandte Chemie - International Edition, 2017, 56, 10467-10470.	7.2	62
56	Paclitaxel-Promoted Supramolecular Polymerization of Peptide Conjugates. Journal of the American Chemical Society, 2019, 141, 11997-12004.	6.6	61
57	Fine-Tuning the Linear Release Rate of Paclitaxel-Bearing Supramolecular Filament Hydrogels through Molecular Engineering. ACS Nano, 2019, 13, 7780-7790.	7.3	60
58	Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1586.	3.3	60
59	Supramolecular Design of Unsymmetric Reverse Bolaamphiphiles for Cellâ€5ensitive Hydrogel Degradation and Drug Release. Angewandte Chemie - International Edition, 2020, 59, 4434-4442.	7.2	60
60	Supramolecular nanostructures as drug carriers. Current Opinion in Chemical Engineering, 2015, 7, 75-83.	3.8	58
61	The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4518-4526.	3.3	58
62	Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells. Acta Biomaterialia, 2012, 8, 2456-2465.	4.1	56
63	Supramolecular Crafting of Self-Assembling Camptothecin Prodrugs with Enhanced Efficacy against Primary Cancer Cells. Theranostics, 2016, 6, 1065-1074.	4.6	56
64	Protease-Sensitive Nanomaterials for Cancer Therapeutics and Imaging. Industrial & Engineering Chemistry Research, 2017, 56, 5761-5777.	1.8	55
65	Supramolecular Tubustecan Hydrogel as Chemotherapeutic Carrier to Improve Tumor Penetration and Local Treatment Efficacy. ACS Nano, 2020, 14, 10083-10094.	7.3	55
66	A Hybrid Protein–Polymer Nanoworm Potentiates Apoptosis Better than a Monoclonal Antibody. ACS Nano, 2014, 8, 2064-2076.	7.3	54
67	Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. Journal of Controlled Release, 2020, 319, 311-321.	4.8	53
68	A Noncrystallization Approach toward Uniform Thylakoids-like 2D "Nano-coins―and Their Grana-like 3D Suprastructures. Journal of the American Chemical Society, 2017, 139, 5883-5889.	6.6	52
69	Drug-Bearing Supramolecular Filament Hydrogels as Anti-Inflammatory Agents. Theranostics, 2017, 7, 2003-2014.	4.6	52
70	Synergistic antitumor activity of a self-assembling camptothecin and capecitabine hybrid prodrug for improved efficacy. Journal of Controlled Release, 2017, 263, 102-111.	4.8	51
71	Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1479.	3.3	51
72	Enhanced Cellular Entry and Efficacy of Tat Conjugates by Rational Design of the Auxiliary Segment. Molecular Pharmaceutics, 2014, 11, 964-973.	2.3	50

#	Article	IF	CITATIONS
73	Controlled Stacking of Charged Block Copolymer Micelles. Langmuir, 2007, 23, 4689-4694.	1.6	49
74	Using Small-Angle Scattering and Contrast Matching to Understand Molecular Packing in Low Molecular Weight Gels. Matter, 2020, 2, 764-778.	5.0	49
75	Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells. Journal of Controlled Release, 2014, 191, 4-14.	4.8	46
76	Solute-Triggered Morphological Transitions of an Amphiphilic Heterografted Brush Copolymer as a Single-Molecule Drug Carrier. Macromolecules, 2017, 50, 2201-2206.	2.2	46
77	Supramolecular Design of Unsymmetric Reverse Bolaamphiphiles for Cell‧ensitive Hydrogel Degradation and Drug Release. Angewandte Chemie, 2020, 132, 4464-4472.	1.6	46
78	Supramolecular control of self-assembling terthiophene–peptide conjugates through the amino acid side chain. Chemical Communications, 2012, 48, 9711.	2.2	44
79	Lacritin-mediated regeneration of the corneal epithelia by protein polymer nanoparticles. Journal of Materials Chemistry B, 2014, 2, 8131-8141.	2.9	43
80	Enzyme-Specific Doxorubicin Drug Beacon as Drug-Resistant Theranostic Molecular Probes. ACS Macro Letters, 2015, 4, 552-555.	2.3	43
81	Macrocyclization of a Class of Camptothecin Analogues into Tubular Supramolecular Polymers. Journal of the American Chemical Society, 2019, 141, 17107-17111.	6.6	42
82	π–π Stacking Mediated Chirality in Functional Supramolecular Filaments. Macromolecules, 2016, 49, 994-1001.	2.2	41
83	Using chirality to influence supramolecular gelation. Chemical Science, 2019, 10, 7801-7806.	3.7	40
84	Supramolecular Polymers Formed by ABC Miktoarm Star Peptides. ACS Macro Letters, 2013, 2, 1088-1094.	2.3	35
85	One-Step Fabrication of Self-Assembled Peptide Thin Films with Highly Dispersed Noble Metal Nanoparticles. Langmuir, 2013, 29, 16051-16057.	1.6	35
86	Kinetic Control in Assembly of Plasmid DNA/Polycation Complex Nanoparticles. ACS Nano, 2019, 13, 10161-10178.	7.3	35
87	Emerging biomaterials for downstream manufacturing of therapeutic proteins. Acta Biomaterialia, 2019, 95, 73-90.	4.1	35
88	Molecular design and synthesis of self-assembling camptothecin drug amphiphiles. Acta Pharmacologica Sinica, 2017, 38, 874-884.	2.8	33
89	Bifunctional Elastin-like Polypeptide Nanoparticles Bind Rapamycin and Integrins and Suppress Tumor Growth in Vivo. Bioconjugate Chemistry, 2017, 28, 2715-2728.	1.8	32
90	Enzymatic activation of cell-penetrating peptides in self-assembled nanostructures triggers fibre-to-micelle morphological transition. Chemical Communications, 2017, 53, 7037-7040.	2.2	31

#	Article	IF	CITATIONS
91	Opening a Can of Worm(â€ŀike Micelle)s: The Effect of Temperature of Solutions of Functionalized Dipeptides. Angewandte Chemie, 2017, 129, 10603-10606.	1.6	30
92	Preparation and Characterization of Synthetic Polypeptide Single Crystals with Controlled Thickness. Macromolecules, 2005, 38, 7371-7377.	2.2	28
93	Activatable nanoprobes for biomolecular detection. Current Opinion in Biotechnology, 2015, 34, 171-179.	3.3	26
94	Crosslinked polymer nanocapsules. Polymer International, 2016, 65, 351-361.	1.6	26
95	Controlling the properties of the micellar and gel phase by varying the counterion in functionalised-dipeptide systems. Chemical Communications, 2020, 56, 4094-4097.	2.2	26
96	Nanoparticle approaches to combating drug resistance. Future Medicinal Chemistry, 2015, 7, 1503-1510.	1.1	24
97	Progress in the Development of Nanotheranostic Systems. Theranostics, 2016, 6, 915-917.	4.6	24
98	Spatiotemporal control of the creation and immolation of peptide assemblies. Coordination Chemistry Reviews, 2016, 320-321, 2-17.	9.5	23
99	Targeting Tumors with Small Molecule Peptides. Current Cancer Drug Targets, 2016, 16, 489-508.	0.8	22
100	Therapeutic supramolecular tubustecan hydrogel combined with checkpoint inhibitor elicits immunity to combat cancer. Biomaterials, 2021, 279, 121182.	5.7	22
101	Interface-Enrichment-Induced Instability and Drug-Loading-Enhanced Stability in Inhalable Delivery of Supramolecular Filaments. ACS Nano, 2019, 13, 12957-12968.	7.3	21
102	Molecularly Engineered Selfâ€Assembling Membranes for Cellâ€Mediated Degradation. Advanced Healthcare Materials, 2015, 4, 602-612.	3.9	20
103	Nanostructure-Based Theranostic Systems. Theranostics, 2016, 6, 1274-1276.	4.6	19
104	Harnessing nanostructured systems for improved treatment and prevention of HIV disease. Bioengineering and Translational Medicine, 2018, 3, 102-123.	3.9	18
105	Sequence isomeric giant surfactants with distinct self-assembly behaviors in solution. Chemical Communications, 2019, 55, 636-639.	2.2	18
106	Isotopic Control over Self-Assembly in Supramolecular Gels. Langmuir, 2020, 36, 8626-8631.	1.6	18
107	An amphipathic alpha-helical peptide from apolipoprotein A1 stabilizes protein polymer vesicles. Journal of Controlled Release, 2014, 191, 15-23.	4.8	17
108	Tear-mediated delivery of nanoparticles through transcytosis of the lacrimal gland. Journal of Controlled Release, 2015, 208, 2-13.	4.8	17

#	Article	IF	CITATIONS
109	Transparent-to-dark photo- and electrochromic gels. Communications Chemistry, 2018, 1, .	2.0	17
110	Layer-by-layer preparation of polyelectrolyte multilayer nanocapsules <i>via</i> crystallized miniemulsions. Chemical Communications, 2019, 55, 1267-1270.	2.2	17
111	A Twoâ€Pronged Pulmonary Gene Delivery Strategy: A Surfaceâ€Modified Fullerene Nanoparticle and a Hypotonic Vehicle. Angewandte Chemie - International Edition, 2021, 60, 15225-15229.	7.2	17
112	Design and assembly of supramolecular dual-modality nanoprobes. Nanoscale, 2015, 7, 9462-9466.	2.8	16
113	Coarse-grained molecular dynamics studies of the structure and stability of peptide-based drug amphiphile filaments. Soft Matter, 2017, 13, 7721-7730.	1.2	16
114	On the encapsulation and assembly of anticancer drugs in a cooperative fashion. Chemical Science, 2019, 10, 5678-5685.	3.7	16
115	Selective Capture and Recovery of Monoclonal Antibodies by Self-Assembling Supramolecular Polymers of High Affinity for Protein Binding. Nano Letters, 2020, 20, 6957-6965.	4.5	16
116	Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends in Pharmacological Sciences, 2022, 43, 510-521.	4.0	16
117	Collagen-Binding Peptide-Enabled Supramolecular Hydrogel Design for Improved Organ Adhesion and Sprayable Therapeutic Delivery. Nano Letters, 2022, 22, 4182-4191.	4.5	16
118	Triggered Sorting and Coâ€Assembly of Genetically Engineered Protein Microdomains in the Cytoplasm. Advanced Materials, 2014, 26, 449-454.	11.1	15
119	Multimeric Disintegrin Protein Polymer Fusions That Target Tumor Vasculature. Biomacromolecules, 2014, 15, 2347-2358.	2.6	15
120	Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G. Biomaterials, 2018, 178, 448-457.	5.7	14
121	A peptide for transcellular cargo delivery: Structure-function relationship and mechanism of action. Journal of Controlled Release, 2020, 324, 633-643.	4.8	14
122	Propagation-Instigated Self-Limiting Polymerization of Multiarmed Amphiphiles into Finite Supramolecular Polymers. Journal of the American Chemical Society, 2021, 143, 18446-18453.	6.6	14
123	Photo-induced formation of organic nanoparticles possessing enhanced affinities for complexing nerve agent mimics. Chemical Communications, 2019, 55, 1987-1990.	2.2	13
124	Conformation Preservation of α-Helical Peptides within Supramolecular Filamentous Assemblies. Biomacromolecules, 2017, 18, 3611-3620.	2.6	12
125	Linearâ€Dendritic Alternating Copolymers. Angewandte Chemie - International Edition, 2019, 58, 10572-10576.	7.2	12
126	Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections. Journal of Controlled Release, 2022, 348, 1028-1049.	4.8	12

#	Article	IF	CITATIONS
127	Peptides and Peptide Conjugates in Medicine. Advanced Drug Delivery Reviews, 2017, 110-111, 1-2.	6.6	11
128	Rational design of multimodal therapeutic nanosystems for effective inhibition of tumor growth and metastasis. Acta Biomaterialia, 2018, 77, 240-254.	4.1	10
129	Lightâ€Triggered Transformation of Molecular Baskets into Organic Nanoparticles. Chemistry - A European Journal, 2019, 25, 273-279.	1.7	10
130	Theranostic supramolecular polymers formed by the self-assembly of a metal-chelating prodrug. Biomaterials Science, 2021, 9, 463-470.	2.6	10
131	Pharmacological and Genetic Blockade of <i>Trpm7</i> in the Carotid Body Treats Obesity-Induced Hypertension. Hypertension, 2021, 78, 104-114.	1.3	10
132	Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. Journal of Physical Chemistry B, 2019, 123, 10582-10593.	1.2	9
133	Adaptable antibody Nanoworms designed for non-Hodgkin lymphoma. Biomaterials, 2020, 262, 120338.	5.7	9
134	Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1194-1211.	2.0	7
135	Multifunctional Self-Assembling Peptide-Based Nanostructures for Targeted Intracellular Delivery: Design, Physicochemical Characterization, and Biological Assessment. Methods in Molecular Biology, 2018, 1758, 11-26.	0.4	6
136	Isomeric control of the mechanical properties of supramolecular filament hydrogels. Biomaterials Science, 2018, 6, 216-224.	2.6	6
137	Valsartan <scp>nanoâ€filaments</scp> alter mitochondrial energetics and promote faster healing in diabetic rat wounds. Wound Repair and Regeneration, 2021, 29, 927-937.	1.5	6
138	Linearâ€Ðendritic Alternating Copolymers. Angewandte Chemie, 2019, 131, 10682-10686.	1.6	4
139	Self-assembling biomaterials for theranostic applications. , 2018, , 533-561.		3
140	Electron-induced rapid crosslinking in supramolecular metal-peptide assembly and chemically responsive disaggregation for catalytic application. Chinese Journal of Catalysis, 2021, 42, 376-387.	6.9	3
141	Self-Assembling Supramolecular Nanostructures for Drug Delivery. World Scientific Series in Nanoscience and Nanotechnology, 2019, , 1-25.	0.1	3
142	Transform nanomedicine with breakthrough thinking?. Journal of Controlled Release, 2021, 330, 1130-1131.	4.8	1
143	Strategies to Modulate the Blood-Brain Barrier for Directed Brain Tumor Targeting. Neuromethods, 2021, , 79-108.	0.2	1
144	Gene Delivery: Plasmidâ€Templated Shape Control of Condensed DNA–Block Copolymer Nanoparticles (Adv. Mater. 2/2013). Advanced Materials, 2013, 25, 154-154.	11.1	0

#	Article	IF	CITATIONS
145	Synthesis of Mikto-Arm Star Peptide Conjugates. Methods in Molecular Biology, 2018, 1777, 193-207.	0.4	Ο
146	A Twoâ€Pronged Pulmonary Gene Delivery Strategy: A Surfaceâ€Modified Fullerene Nanoparticle and a Hypotonic Vehicle. Angewandte Chemie, 2021, 133, 15353-15357.	1.6	0
147	Blockade of <i>Trpm7</i> in the Carotid Body area attenuated intermittent hypoxiaâ€induced Hypertension. FASEB Journal, 2022, 36, .	0.2	Ο