Othman Ghribi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4637587/publications.pdf

Version: 2024-02-01

86 papers

4,065 citations

108046 37 h-index 139680 61 g-index

92 all docs 92 docs citations 92 times ranked 6237 citing authors

#	Article	IF	CITATIONS
1	Alpha-Synuclein-induced DNA Methylation and Gene Expression in Microglia. Neuroscience, 2021, 468, 186-198.	1.1	8
2	Folding Free-Energy Landscape of α-Synuclein (35–97) Via Replica Exchange Molecular Dynamics. Journal of Chemical Information and Modeling, 2021, 61, 432-443.	2.5	10
3	A Diet Enriched in Palmitate and Deficient in Linoleate Exacerbates Oxidative Stress and Amyloid-β Burden in the Hippocampus of 3xTg-AD Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 68, 219-237.	1.2	9
4	Palmitate-Induced SREBP1 Expression and Activation Underlies the Increased BACE 1 Activity and Amyloid Beta Genesis. Molecular Neurobiology, 2019, 56, 5256-5269.	1.9	11
5	27-Hydroxycholesterol increases α-synuclein protein levels through proteasomal inhibition in human dopaminergic neurons. BMC Neuroscience, 2018, 19, 17.	0.8	19
6	27-hydroxycholesterol decreases cell proliferation in colon cancer cell lines. Biochimie, 2018, 153, 171-180.	1.3	35
7	Palmitic Acid-Enriched Diet Increases α-Synuclein and Tyrosine Hydroxylase Expression Levels in the Mouse Brain. Frontiers in Neuroscience, 2018, 12, 552.	1.4	19
8	Leptin alleviates the saturated fatty acidâ€induced increase in BACE1 expression and Amyloidâ€Î² production ― Relevance to Alzheimer's disease pathogenesis. FASEB Journal, 2018, 32, 659.2.	0.2	1
9	Saturated fatâ€enriched diet decreases SIRT1 expression in the mouse hippocampus ―The SIRTain effects of saturated fat in the brain. FASEB Journal, 2018, 32, lb7.	0.2	1
10	Nuclear Factor Kappa-light-chain-enhancer of Activated B Cells (NF-κB)- a Friend, a Foe, or a Bystander - in the Neurodegenerative Cascade and Pathogenesis of Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2018, 16, 1050-1065.	0.8	17
11	Calcitriol increases leptin expression in neuronal cells ―lmplications for Alzheimer's Disease. FASEB Journal, 2018, 32, 805.1.	0.2	0
12	Maternal low-protein diet decreases brain-derived neurotrophic factor expression in the brains of the neonatal rat offspring. Journal of Nutritional Biochemistry, 2017, 45, 54-66.	1.9	21
13	Method for organotypic tissue culture in the aged animal. MethodsX, 2017, 4, 166-171.	0.7	14
14	Cellular hormetic response to 27-hydroxycholesterol promotes neuroprotection through AICD induction of MAST4 abundance and kinase activity. Scientific Reports, 2017, 7, 13898.	1.6	16
15	27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chemistry and Physics of Lipids, 2017, 207, 108-126.	1.5	41
16	The cholesterol metabolite 27-hydroxycholesterol stimulates cell proliferation via $\mathrm{ER}\hat{l}^2$ in prostate cancer cells. Cancer Cell International, 2017, 17, 52.	1.8	37
17	Palmitate Increases \hat{I}^2 -site A \hat{I}^2 PP-Cleavage Enzyme 1 Activity and Amyloid- \hat{I}^2 Genesis by Evoking Endoplasmic Reticulum Stress and Subsequent C/EBP Homologous Protein Activation. Journal of Alzheimer's Disease, 2017, 57, 907-925.	1.2	21
18	[P1â€"216]: PALMITATEâ€ENRICHED DIETâ€INDUCED ER STRESS AND CHOP ACTIVATION CAUSES TAU HYPERPHOSPHORYLATION IN THE CULTURED HUMAN NEUROBLASTOMA CELLS AND THE MOUSE BRAIN. Alzheimer's and Dementia, 2017, 13, P326.	0.4	2

#	Article	IF	CITATIONS
19	[P2–129]: PALMITATE INDUCES BACE1 EXPRESSION AND ACTIVITY BY INDUCING STEROL RESPONSE ELEMENT BINDING PROTEIN 1 EXPRESSION AND ACTIVATION IN THE MOUSE HIPPOCAMPUS AND HUMAN SH‧Y5Y NEUROBLASTOMA CELLS. Alzheimer's and Dementia, 2017, 13, P656.	0.4	3
20	Role of Endolysosomes in Skeletal Muscle Pathology Observed in a Cholesterol-Fed Rabbit Model of Alzheimer's Disease. Frontiers in Aging Neuroscience, 2016, 8, 129.	1.7	5
21	Maternal low protein diet leads to placental angiogenic compensation via dysregulated M1/M2 macrophages and TNFα expression in Sprague-Dawley rats. Journal of Reproductive Immunology, 2016, 118, 9-17.	0.8	16
22	Palmitate-induced Endoplasmic Reticulum stress and subsequent C/EBPÎ \pm Homologous Protein activation attenuates leptin and Insulin-like growth factor 1 expression in the brain. Cellular Signalling, 2016, 28, 1789-1805.	1.7	43
23	27-Hydroxycholesterol stimulates cell proliferation and resistance to docetaxel-induced apoptosis in prostate epithelial cells. Medical Oncology, 2016, 33, 12.	1.2	27
24	Molecular events linking cholesterol to Alzheimer's disease and inclusion body myositis in a rabbit model. American Journal of Neurodegenerative Disease, 2016, 5, 74-84.	0.1	4
25	Maternal low-protein diet causes body weight loss in male, neonate Sprague–Dawley rats involving UCP-1-mediated thermogenesis. Journal of Nutritional Biochemistry, 2015, 26, 729-735.	1.9	23
26	Does the oxysterol 27-hydroxycholesterol underlie Alzheimer's disease–Parkinson's disease overlap?. Experimental Gerontology, 2015, 68, 13-18.	1.2	65
27	Epigenetics of Inflammation, Maternal Infection, and Nutrition1–3. Journal of Nutrition, 2015, 145, 1109S-1115S.	1.3	49
28	The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells. Molecular and Cellular Biochemistry, 2015, 410, 187-195.	1.4	50
29	Cholesterol-enriched diet disrupts the blood-testis barrier in rabbits. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1125-E1130.	1.8	40
30	Leptin attenuates BACE1 expression and amyloid- \hat{l}^2 genesis via the activation of SIRT1 signaling pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1587-1595.	1.8	103
31	P1-075: LEPTIN ATTENUATES BACE1 EXPRESSION AND AMYLOID-B GENESIS VIA THE ACTIVATION OF SIRT1 SIGNALING PATHWAY. , 2014, 10, P330-P331.		1
32	Identification of microRNAs involved in Alzheimer's progression using a rabbit model of the disease. American Journal of Neurodegenerative Disease, 2014, 3, 33-44.	0.1	26
33	Oxidative stress in blood in Alzheimer's disease and mild cognitive impairment: A meta-analysis. Neurobiology of Disease, 2013, 59, 100-110.	2.1	260
34	Differential Effects of the Estrogen Receptor Agonist Estradiol on Toxicity Induced by Enzymatically-Derived or Autoxidation-Derived Oxysterols in Human ARPE-19 Cells. Current Eye Research, 2013, 38, 1159-1171.	0.7	8
35	Gadd153 and NF-κB Crosstalk Regulates 27-Hydroxycholesterol-Induced Increase in BACE1 and β-Amyloid Production in Human Neuroblastoma SH-SY5Y Cells. PLoS ONE, 2013, 8, e70773.	1.1	61
36	Deferiprone Reduces Amyloid- \hat{l}^2 and Tau Phosphorylation Levels but not Reactive Oxygen Species Generation in Hippocampus of Rabbits Fed a Cholesterol-Enriched Diet. Journal of Alzheimer's Disease, 2012, 30, 167-182.	1.2	57

#	Article	IF	CITATIONS
37	The Neuroprotective Effect of Fisetin in the MPTP Model of Parkinson's Disease. Journal of Parkinson's Disease, 2012, 2, 287-302.	1.5	43
38	Targeted glycomics by selected reaction monitoring for highly sensitive glycan compositional analysis. Proteomics, 2012, 12, 2510-2522.	1.3	16
39	Endoplasmic reticulum stress-induced CHOP activation mediates the down-regulation of leptin in human neuroblastoma SH-SY5Y cells treated with the oxysterol 27-hydroxycholesterol. Cellular Signalling, 2012, 24, 484-492.	1.7	46
40	Cellular model of Alzheimer's disease â€" Relevance to therapeutic testing. Experimental Neurology, 2012, 233, 733-739.	2.0	8
41	Increased EID1 nuclear translocation impairs synaptic plasticity and memory function associated with pathogenesis of Alzheimer's disease. Neurobiology of Disease, 2012, 45, 902-912.	2.1	40
42	Leptin signaling and Alzheimer's disease. American Journal of Neurodegenerative Disease, 2012, 1, 245-65.	0.1	45
43	Metabolomic Identification in Cerebrospinal Fluid of the Effects of High Dietary Cholesterol in a Rabbit Model of Alzheimer's Disease. Metabolomics: Open Access, 2012, 2, 109.	0.1	3
44	Endolysosome Mechanisms Associated with Alzheimer's Disease-like Pathology in Rabbits Ingesting Cholesterol-Enriched Diet. Journal of Alzheimer's Disease, 2011, 22, 1289-1303.	1.2	35
45	The oxysterol 27â€hydroxycholesterol regulates αâ€synuclein and tyrosine hydroxylase expression levels in human neuroblastoma cells through modulation of liver X receptors and estrogen receptors–relevance to Parkinson's disease. Journal of Neurochemistry, 2011, 119, 1119-1136.	2.1	74
46	Cholesterol-enriched diet causes age-related macular degeneration-like pathology in rabbit retina. BMC Ophthalmology, 2011, 11, 22.	0.6	60
47	Molecular interplay between leptin, insulin-like growth factor-1, and \hat{l}^2 -amyloid in organotypic slices from rabbit hippocampus. Molecular Neurodegeneration, 2011, 6, 41.	4.4	34
48	Silencing GADD153/CHOP Gene Expression Protects against Alzheimer's Disease-Like Pathology Induced by 27-Hydroxycholesterol in Rabbit Hippocampus. PLoS ONE, 2011, 6, e26420.	1.1	73
49	Caffeine Protects Against Disruptions of the Blood-Brain Barrier in Animal Models of Alzheimer's and Parkinson's Diseases. Journal of Alzheimer's Disease, 2010, 20, S127-S141.	1.2	106
50	Leptin Reduces the Accumulation of $\hat{Al^2}$ and Phosphorylated Tau Induced by 27-Hydroxycholesterol in Rabbit Organotypic Slices. Journal of Alzheimer's Disease, 2010, 19, 1007-1019.	1.2	120
51	Caffeine protects against oxidative stress and Alzheimer's disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radical Biology and Medicine, 2010, 49, 1212-1220.	1.3	136
52	The oxysterol 27-hydroxycholesterol increases \hat{l}^2 -amyloid and oxidative stress in retinal pigment epithelial cells. BMC Ophthalmology, 2010, 10, 22.	0.6	71
53	βâ€Amyloid regulates leptin expression and tau phosphorylation through the mTORC1 signaling pathway. Journal of Neurochemistry, 2010, 115, 373-384.	2.1	33
54	Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on \hat{I}^2 -amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Molecular Neurodegeneration, 2009, 4, 1.	4.4	163

#	Article	IF	Citations
55	Cholesterolâ€enriched diet induces endosome/lysosome dysfunction in a rabbit model of inclusion body myositis. FASEB Journal, 2009, 23, LB135.	0.2	O
56	Hippocampus of Ames dwarf mice is resistant to βâ€amyloidâ€induced tau hyperphosphorylation and changes in apoptosisâ€regulatory protein levels. Hippocampus, 2008, 18, 239-244.	0.9	37
57	Regulation of β-amyloid levels in the brain of cholesterol-fed rabbit, a model system for sporadic Alzheimer's disease. Mechanisms of Ageing and Development, 2008, 129, 649-655.	2.2	62
58	Hypercholesterolemia-induced $\hat{Al^2}$ accumulation in rabbit brain is associated with alteration in IGF-1 signaling. Neurobiology of Disease, 2008, 32, 426-432.	2.1	68
59	Caffeine blocks disruption of blood brain barrier in a rabbit model of Alzheimer's disease. Journal of Neuroinflammation, 2008, 5, 12.	3.1	117
60	Rabbits fed cholesterol-enriched diets exhibit pathological features of inclusion body myositis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R829-R835.	0.9	23
61	Potential Mechanisms Linking Cholesterol to Alzheimer's Disease-like Pathology in Rabbit Brain, Hippocampal Organotypic Slices, and Skeletal Muscle. Journal of Alzheimer's Disease, 2008, 15, 673-684.	1.2	60
62	Can Studies of Aluminum Toxicity In Vivo and In Vitro Provide Relevant Information on the Pathogenesis and Etiology of Alzheimer's Disease?. Journal of Alzheimer's Disease, 2007, 11, 429-430.	1.2	17
63	Stabilization of bloodâ€brain barrier by caffeine in cholesterolâ€fed rabbits. FASEB Journal, 2007, 21, A1168.	0.2	0
64	High cholesterol content in neurons increases BACE, \hat{l}^2 -amyloid, and phosphorylated tau levels in rabbit hippocampus. Experimental Neurology, 2006, 200, 460-467.	2.0	144
65	Supplementation of the diet with silicic acid to reduce body burden of aluminum: A miracle cure or useless treatment for Alzheimer's disease?. Journal of Alzheimer's Disease, 2006, 10, 25-27.	1.2	2
66	Peri-nuclear clustering of mitochondria is triggered during aluminum maltolate induced apoptosis. Journal of Alzheimer's Disease, 2006, 9, 195-205.	1.2	25
67	Preservation of the blood brain barrier integrity may underlie neuroprotective effects of statins in Alzheimer's disease. Journal of Alzheimer's Disease, 2006, 10, 407-408.	1,2	8
68	Deposition of iron and ?-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. Journal of Neurochemistry, 2006, 99, 438-449.	2.1	127
69	The Role of the Endoplasmic Reticulum in the Accumulation of β-Amyloid Peptide in Alzheimers Disease. Current Molecular Medicine, 2006, 6, 119-133.	0.6	34
70	GDNF regulates the $\hat{Al^2}$ -induced endoplasmic reticulum stress response in rabbit hippocampus by inhibiting the activation of gadd 153 and the JNK and ERK kinases. Neurobiology of Disease, 2004, 16, 417-427.	2.1	30
71	Aluminum Maltolate-Induced Toxicity in NT2 Cells Occurs Through Apoptosis and Includes Cytochrome c Release. NeuroToxicology, 2004, 25, 859-867.	1.4	37
72	Lithium inhibits A?-induced stress in endoplasmic reticulum of rabbit hippocampus but does not prevent oxidative damage and tau phosphorylation. Journal of Neuroscience Research, 2003, 71, 853-862.	1.3	73

#	Article	IF	CITATIONS
73	Intracellular mechanisms underlying aluminum-induced apoptosis in rabbit brain. Journal of Inorganic Biochemistry, 2003, 97, 151-154.	1.5	94
74	Aβ(1–42)-induced JNK and ERK activation in rabbit hippocampus is differentially regulated by lithium but is not involved in the phosphorylation of tau. Molecular Brain Research, 2003, 119, 201-206.	2.5	34
75	MPP ⁺ Induces the Endoplasmic Reticulum Stress Response in Rabbit Brain Involving Activation of the ATF-6 and NF-ÎB Signaling Pathways. Journal of Neuropathology and Experimental Neurology, 2003, 62, 1144-1153.	0.9	48
76	Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2002, 26, 127-138.	2.5	85
77	The endoplasmic reticulum is the main site for caspase-3 activation following aluminum-induced neurotoxicity in rabbit hippocampus. Neuroscience Letters, 2002, 324, 217-221.	1.0	40
78	Lithium inhibits aluminum-induced apoptosis in rabbit hippocampus, by preventing cytochromeâ€fc translocation, Bcl-2 decrease, Bax elevation and caspase-3 activation. Journal of Neurochemistry, 2002, 82, 137-145.	2.1	84
79	GDNF Protects against Aluminum-Induced Apoptosis in Rabbits by Upregulating Bcl-2 and Bcl-XL and Inhibiting Mitochondrial Bax Translocation. Neurobiology of Disease, 2001, 8, 764-773.	2.1	97
80	AMPA receptor regulation and LTP in the hippocampus of young and aged apolipoprotein E-deficient mice. Neurobiology of Aging, 2001, 22, 9-15.	1.5	26
81	Ovarian steroids and selective estrogen receptor modulators activity on rat brain NMDA and AMPA receptors. Brain Research Reviews, 2001, 37, 153-161.	9.1	144
82	Aluminium and neuronal cell injury: inter-relationships between neurofilamentous arrays and apoptosis. Journal of Inorganic Biochemistry, 2001, 87, 15-19.	1.5	47
83	Co-involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Research, 2001, 903, 66-73.	1.1	89
84	Hypoxia-Induced Loss of Synaptic Transmission Is Exacerbated in Hippocampal Slices of Transgenic Mice Expressing C-Terminal Fragments of Alzheimer Amyloid Precursor Protein., 1999, 9, 201-205.		9
85	Competitive NMDA receptor blockers reduce striatal glutamate accumulation in ischaemia. NeuroReport, 1994, 5, 1253-1255.	0.6	12
86	Effect of kynurenic acid on the ischaemia-induced accumulation of glutamate in rat striatum. NeuroReport, 1994, 5, 435-437.	0.6	14