Jorge Manzanares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4636627/publications.pdf

Version: 2024-02-01

36303 58581 8,144 167 51 82 citations g-index h-index papers 169 169 169 6939 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biomarkers. , 2022, , 693-724.		5
2	CBDâ€mediated regulation of heroin withdrawalâ€induced behavioural and molecular changes in mice. Addiction Biology, 2022, 27, e13150.	2.6	9
3	Biomarkers of the Endocannabinoid System in Substance Use Disorders. Biomolecules, 2022, 12, 396.	4.0	9
4	Immunomodulatory Role of CB2 Receptors in Emotional and Cognitive Disorders. Frontiers in Psychiatry, 2022, 13, 866052.	2.6	11
5	Cannabinoid CB1 Receptor Involvement in the Actions of CBD on Anxiety and Coping Behaviors in Mice. Pharmaceuticals, 2022, 15, 473.	3.8	21
6	Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. International Journal of Molecular Sciences, 2022, 23, 4764.	4.1	14
7	Role of Cannabinoid CB2 Receptor in Alcohol Use Disorders: From Animal to Human Studies. International Journal of Molecular Sciences, 2022, 23, 5908.	4.1	4
8	Differences in Gene Expression of Endogenous Opioid Peptide Precursor, Cannabinoid 1 and 2 Receptors and Interleukin Beta in Peripheral Blood Mononuclear Cells of Patients With Refractory Failed Back Surgery Syndrome Treated With Spinal Cord Stimulation: Markers of Therapeutic Outcomes?. Neuromodulation, 2021, 24, 49-60.	0.8	3
9	Cannabidiol Modulates Behavioural and Gene Expression Alterations Induced by Spontaneous Cocaine Withdrawal. Neurotherapeutics, 2021, 18, 615-623.	4.4	15
10	Cannabidiol prevents priming- and stress-induced reinstatement of the conditioned place preference induced by cocaine in mice. Journal of Psychopharmacology, 2021, 35, 864-874.	4.0	16
11	The administration of sertraline plus naltrexone reduces ethanol consumption and motivation in a long-lasting animal model of post-traumatic stress disorder. Neuropharmacology, 2021, 189, 108552.	4.1	2
12	Role of Cannabidiol in the Therapeutic Intervention for Substance Use Disorders. Frontiers in Pharmacology, 2021, 12, 626010.	3.5	38
13	Pairing Binge Drinking and a High-Fat Diet in Adolescence Modulates the Inflammatory Effects of Subsequent Alcohol Consumption in Mice. International Journal of Molecular Sciences, 2021, 22, 5279.	4.1	5
14	Cannabidiol and Sertraline Regulate Behavioral and Brain Gene Expression Alterations in an Animal Model of PTSD. Frontiers in Pharmacology, 2021, 12, 694510.	3.5	10
15	Editorial: The Search for Biomarkers in Psychiatry. Frontiers in Psychiatry, 2021, 12, 720411.	2.6	3
16	Editorial: Cannabidiol Treatment in Neurotherapeutic Interventions. Frontiers in Pharmacology, 2021, 12, 752292.	3.5	3
17	CB2 Receptor Involvement in the Treatment of Substance Use Disorders. Biomolecules, 2021, 11, 1556.	4.0	13
18	Inflammatory Biomarkers in Addictive Disorders. Biomolecules, 2021, 11, 1824.	4.0	14

#	Article	IF	CITATIONS
19	Gender differences in the effects of cannabidiol on ethanol binge drinking in mice. Addiction Biology, 2020, 25, e12765.	2.6	26
20	Neuropsychophysiological Measures of Alcohol Dependence: Can We Use EEG in the Clinical Assessment?. Frontiers in Psychiatry, 2020, 11, 676.	2.6	16
21	Cannabidiol: A Potential New Alternative for the Treatment of Anxiety, Depression, and Psychotic Disorders. Biomolecules, 2020, 10, 1575.	4.0	133
22	Cannabis Use in Pregnant and Breastfeeding Women: Behavioral and Neurobiological Consequences. Frontiers in Psychiatry, 2020, 11, 586447.	2.6	30
23	Biomarkers in Psychiatry: Concept, Definition, Types and Relevance to the Clinical Reality. Frontiers in Psychiatry, 2020, 11, 432.	2.6	151
24	Association of cannabinoid receptor genes (CNR1 and CNR2) polymorphisms and panic disorder. Anxiety, Stress and Coping, 2020, 33, 256-265.	2.9	9
25	Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Frontiers in Psychiatry, 2020, 11, 315.	2.6	76
26	Cannabidiol does not display drug abuse potential in mice behavior. Acta Pharmacologica Sinica, 2019, 40, 358-364.	6.1	64
27	Measurement of CSF αâ€synuclein improves early differential diagnosis of mild cognitive impairment due to Alzheimer's disease. Journal of Neurochemistry, 2019, 150, 218-230.	3.9	12
28	Cannabidiol and Cannabis Use Disorder. , 2019, , 31-42.		0
29	Cannabidiol regulates behavioural alterations and gene expression changes induced by spontaneous cannabinoid withdrawal. British Journal of Pharmacology, 2018, 175, 2676-2688.	5.4	24
30	Alterations in Gene and Protein Expression of Cannabinoid CB2 and GPR55 Receptors in the Dorsolateral Prefrontal Cortex of Suicide Victims. Neurotherapeutics, 2018, 15, 796-806.	4.4	44
31	Cannabinoid CB1 and CB2ÂReceptors, and Monoacylglycerol Lipase Gene Expression Alterations in the Basal Ganglia of Patients with Parkinson's Disease. Neurotherapeutics, 2018, 15, 459-469.	4.4	65
32	Cannabidiol reduces ethanol consumption, motivation and relapse in mice. Addiction Biology, 2018, 23, 154-164.	2.6	93
33	Deletion of Dlk1 increases the vulnerability to developing anxiety-like behaviors and ethanol consumption in mice. Biochemical Pharmacology, 2018, 158, 37-44.	4.4	14
34	Cannabidiol regulates the expression of hypothalamus-pituitary-adrenal axis-related genes in response to acute restraint stress. Journal of Psychopharmacology, 2018, 32, 1379-1384.	4.0	28
35	Role of the endocannabinoid system in drug addiction. Biochemical Pharmacology, 2018, 157, 108-121.	4.4	87
36	Pharmacological regulation of cannabinoid CB2 receptor modulates the reinforcing and motivational actions of ethanol. Biochemical Pharmacology, 2018, 157, 227-234.	4.4	24

#	Article	IF	CITATIONS
37	Effects of cannabidiol plus naltrexone on motivation and ethanol consumption. British Journal of Pharmacology, 2018, 175, 3369-3378.	5.4	38
38	Disruption of blood–brain barrier integrity in postmortem alcoholic brain: preclinical evidence of TLR4 involvement from a bingeâ€ike drinking model. Addiction Biology, 2017, 22, 1103-1116.	2.6	86
39	Changes in gene expression and sensitivity of cocaine reward produced by a continuous fat diet. Psychopharmacology, 2017, 234, 2337-2352.	3.1	23
40	The rewarding effects of ethanol are modulated by binge eating of a high-fat diet during adolescence. Neuropharmacology, 2017, 121, 219-230.	4.1	29
41	The Modulation of the Startle Reflex as Predictor of Alcohol Use Disorders in a Sample of Heavy Drinkers: A 4-Year Follow-Up Study. Alcoholism: Clinical and Experimental Research, 2017, 41, 1212-1219.	2.4	2
42	Deletion of Dlk2 increases the vulnerability to anxiety-like behaviors and impairs the anxiolytic action of alprazolam. Psychoneuroendocrinology, 2017, 85, 134-141.	2.7	9
43	Psychological symptomatology and impaired prepulse inhibition of the startle reflex are associated with cannabis-induced psychosis. Journal of Psychopharmacology, 2017, 31, 1035-1045.	4.0	9
44	Involvement of the dynorphin/KOR system on the nociceptive, emotional and cognitive manifestations of joint pain in mice. Neuropharmacology, 2017, 116, 315-327.	4.1	36
45	Effects of bingeing on fat during adolescence on the reinforcing effects of cocaine in adult male mice. Neuropharmacology, 2017, 113, 31-44.	4.1	37
46	Different Molecular/Behavioral Endophenotypes in C57BL/6J Mice Predict the Impact of OX1 Receptor Blockade on Binge-Like Ethanol Intake. Frontiers in Behavioral Neuroscience, 2017, 11, 186.	2.0	14
47	Increased vulnerability to ethanol consumption in adolescent maternal separated mice. Addiction Biology, 2016, 21, 847-858.	2.6	33
48	Topiramate increases the rewarding properties of cocaine in young-adult mice limiting its clinical usefulness. Psychopharmacology, 2016, 233, 3849-3859.	3.1	6
49	Increased Expression of Readthrough Acetylcholinesterase Variants in the Brains of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2016, 53, 831-841.	2.6	26
50	Social defeat in adolescent mice increases vulnerability to alcohol consumption. Addiction Biology, 2016, 21, 87-97.	2.6	55
51	Association between maltreatment and polydrug use among adolescents. Child Abuse and Neglect, 2016, 51, 379-389.	2.6	25
52	Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain. Pain, 2015, 156, 2001-2012.	4.2	71
53	Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Frontiers in Neuroanatomy, 2015, 9, 9.	1.7	47
54	Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic–pituitary–adrenal axis and other consequences of daily repeated stress. European Neuropsychopharmacology, 2015, 25, 1248-1259.	0.7	14

#	Article	IF	CITATIONS
55	Role of CB2 receptors in social and aggressive behavior in male mice. Psychopharmacology, 2015, 232, 3019-3031.	3.1	31
56	Differential Pharmacological Regulation of Sensorimotor Gating Deficit in CB1 Knockout Mice and Associated Neurochemical and Histological Alterations. Neuropsychopharmacology, 2015, 40, 2639-2647.	5.4	5
57	Role of cannabinoid CB ₂ receptor in the reinforcing actions of ethanol. Addiction Biology, 2015, 20, 43-55.	2.6	69
58	Cannabidiol as a Potential Treatment for Anxiety Disorders. Neurotherapeutics, 2015, 12, 825-836.	4.4	453
59	Reduced Contextual Discrimination following Alcohol Consumption or MDMA Administration in Mice. PLoS ONE, 2015, 10, e0142978.	2.5	11
60	Effects of naltrexone plus topiramate on ethanol selfâ€administration and tyrosine hydroxylase gene expression changes. Addiction Biology, 2014, 19, 862-873.	2.6	29
61	Regulatory role of the cannabinoid CB ₂ receptor in stressâ€induced neuroinflammation in mice. British Journal of Pharmacology, 2014, 171, 2814-2826.	5.4	78
62	Abnormal Expression Pattern of Notch Receptors, Ligands, and Downstream Effectors in the Dorsolateral Prefrontal Cortex and Amygdala of Suicidal Victims. Molecular Neurobiology, 2014, 49, 957-965.	4.0	23
63	Pregabalin and topiramate regulate behavioural and brain gene transcription changes induced by spontaneous cannabinoid withdrawal in mice. Addiction Biology, 2013, 18, 252-262.	2.6	22
64	Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology, 2013, 73, 388-396.	4.1	111
65	Gene and protein alterations of FKBP5 and glucocorticoid receptor in the amygdala of suicide victims. Psychoneuroendocrinology, 2013, 38, 1251-1258.	2.7	62
66	Role of CB1 and CB2 cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate. Pain, 2013, 154, 160-174.	4.2	66
67	CB1 cannabinoid receptor-mediated aggressive behavior. Neuropharmacology, 2013, 75, 172-180.	4.1	56
68	Voluntary Alcohol Drinking Enhances Proopiomelanocortin Gene Expression in Nucleus Accumbens Shell and Hypothalamus of <scp>S</scp> ardinian Alcoholâ€Preferring Rats. Alcoholism: Clinical and Experimental Research, 2013, 37, E131-40.	2.4	21
69	Role of CB2 Cannabinoid Receptors in the Rewarding, Reinforcing, and Physical Effects of Nicotine. Neuropsychopharmacology, 2013, 38, 2515-2524.	5.4	109
70	Spontaneous Generation of Infectious Prion Disease in Transgenic Mice. Emerging Infectious Diseases, 2013, 19, 1938-1947.	4.3	18
71	Endogenous cannabinoid system regulates intestinal barrier function in vivo through cannabinoid type 1 receptor activation. American Journal of Physiology - Renal Physiology, 2012, 302, G565-G571.	3.4	44
72	Decreased Cocaine Motor Sensitization and Self-Administration in Mice Overexpressing Cannabinoid CB2 Receptors. Neuropsychopharmacology, 2012, 37, 1749-1763.	5.4	104

#	Article	lF	CITATIONS
73	Cannabinoid Type 2 Receptor Activation Downregulates Stroke-Induced Classic and Alternative Brain Macrophage/Microglial Activation Concomitant to Neuroprotection. Stroke, 2012, 43, 211-219.	2.0	179
74	Pregabalin†and topiramateâ€mediated regulation of cognitive and motor impulsivity in DBA/2 mice. British Journal of Pharmacology, 2012, 167, 183-195.	5.4	17
75	Overexpression of CB2 cannabinoid receptors results in neuroprotection against behavioral and neurochemical alterations induced by intracaudate administration of 6-hydroxydopamine. Neurobiology of Aging, 2012, 33, 421.e1-421.e16.	3.1	47
76	Changes in acetylcholinesterase expression are associated with altered presenilin-1 levels. Neurobiology of Aging, 2012, 33, 627.e27-627.e37.	3.1	23
77	Accumbal dopamine, noradrenaline and serotonin activity after naloxone-conditioned place aversion in morphine-dependent mice. Neurochemistry International, 2012, 61, 433-440.	3.8	19
78	Cannabinoid CB ₂ receptorâ€mediated regulation of impulsiveâ€like behaviour in DBA/2 mice. British Journal of Pharmacology, 2012, 165, 260-273.	5.4	69
79	Chronic blockade of cannabinoid CB ₂ receptors induces anxiolyticâ€like actions associated with alterations in GABA _A receptors. British Journal of Pharmacology, 2012, 165, 951-964.	5.4	116
80	Innate difference in the endocannabinoid signaling and its modulation by alcohol consumption in alcoholâ€preferring sP rats. Addiction Biology, 2012, 17, 62-75.	2.6	36
81	Increased ethanol intake in prodynorphin knockout mice is associated to changes in opioid receptor function and dopamine transmission. Addiction Biology, 2012, 17, 322-337.	2.6	27
82	Overexpression of Cannabinoid CB2 Receptor in the Brain Induces Hyperglycaemia and a Lean Phenotype in Adult Mice. Journal of Neuroendocrinology, 2012, 24, 1106-1119.	2.6	46
83	Increased vulnerability to 6-hydroxydopamine lesion and reduced development of dyskinesias in mice lacking CB1 cannabinoid receptors. Neurobiology of Aging, 2011, 32, 631-645.	3.1	32
84	Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects. Frontiers in Behavioral Neuroscience, 2011, 5, 63.	2.0	101
85	Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiolytic action of alprazolam in mice. Journal of Psychopharmacology, 2011, 25, 111-120.	4.0	140
86	Decreased GABA _A and GABA _B receptor functional activity in cannabinoid CB ₁ receptor knockout mice. Journal of Psychopharmacology, 2011, 25, 105-110.	4.0	17
87	Regulatory Role of Cannabinoid Receptor 1 in Stress-Induced Excitotoxicity and Neuroinflammation. Neuropsychopharmacology, 2011, 36, 805-818.	5.4	97
88	Deletion of CB2 Cannabinoid Receptor Induces Schizophrenia-Related Behaviors in Mice. Neuropsychopharmacology, 2011, 36, 1489-1504.	5.4	178
89	Prodynorphin gene deletion increased anxiety-like behaviours, impaired the anxiolytic effect of bromazepam and altered GABA _A receptor subunits gene expression in the amygdala. Journal of Psychopharmacology, 2011, 25, 87-96.	4.0	22
90	CB1 Receptor Blockade Decreases Ethanol Intake and Associated Neurochemical Changes in Fawnâ€Hooded Rats. Alcoholism: Clinical and Experimental Research, 2010, 34, 131-141.	2.4	44

#	Article	IF	CITATIONS
91	Depressionâ€resistant endophenotype in mice overexpressing cannabinoid CB ₂ receptors. British Journal of Pharmacology, 2010, 160, 1773-1784.	5.4	169
92	The cannabinoid CB1 receptor is involved in the anxiolytic, sedative and amnesic actions of benzodiazepines. Journal of Psychopharmacology, 2010, 24, 757-765.	4.0	24
93	Lactacystin requires reactive oxygen species and Bax redistribution to induce mitochondriaâ€mediated cell death. British Journal of Pharmacology, 2009, 158, 1121-1130.	5.4	26
94	Modulation of Impulsivity by Topiramate. Journal of Clinical Psychopharmacology, 2009, 29, 584-589.	1.4	72
95	Opioid and Cannabinoid Systems as Therapeutic Targets for the Treatment of Alcohol Dependence: From Animal Models to Clinical Practice. The Open Neuropsychopharmacology Journal, 2009, 2, 53-63.	0.3	2
96	Manipulation of fatty acid amide hydrolase functional activity alters sensitivity and dependence to ethanol. Journal of Neurochemistry, 2008, 104, 233-243.	3.9	77
97	Time dependent alterations on tyrosine hydroxylase, opioid and cannabinoid CB1 receptor gene expressions after acute ethanol administration in the rat brain. European Neuropsychopharmacology, 2008, 18, 373-382.	0.7	38
98	Interferon- \hat{l}^3 Is a Critical Modulator of CB ₂ Cannabinoid Receptor Signaling during Neuropathic Pain. Journal of Neuroscience, 2008, 28, 12136-12145.	3.6	122
99	Crucial Role of CB ₂ Cannabinoid Receptor in the Regulation of Central Immune Responses during Neuropathic Pain. Journal of Neuroscience, 2008, 28, 12125-12135.	3.6	172
100	Use of Cocaine by Heavy Drinkers Increases Vulnerability to Developing Alcohol Dependence. Journal of Clinical Psychiatry, 2008, 69, 563-570.	2.2	16
101	Gene Transcription Alterations Associated with Decrease of Ethanol Intake Induced by Naltrexone in the Brain of Wistar Rats. Neuropsychopharmacology, 2007, 32, 1358-1369.	5.4	35
102	The Effects of Topiramate Adjunctive Treatment Added to Antidepressants in Patients with Resistant Obsessive-compulsive Disorder. Journal of Clinical Psychopharmacology, 2006, 26, 341-344.	1.4	44
103	Role of the Cannabinoid System in Pain Control and Therapeutic Implications for the Management of Acute and Chronic Pain Episodes. Current Neuropharmacology, 2006, 4, 239-257.	2.9	216
104	\hat{I}^2 - and \hat{I}' -opioid receptor functional activities are increased in the caudate putamen of cannabinoid CB1 receptor knockout mice. European Journal of Neuroscience, 2005, 22, 2106-2110.	2.6	23
105	Anxiolytic-like effect of a serotonergic ligand with high affinity for 5-HT1A, 5-HT2A and 5-HT3 receptors. European Journal of Pharmacology, 2005, 511, 9-19.	3.5	20
106	INTERACTIONS BETWEEN CANNABINOID AND OPIOID RECEPTOR SYSTEMS IN THE MEDIATION OF ETHANOL EFFECTS. Alcohol and Alcoholism, 2005, 40, 25-34.	1.6	46
107	Synthesis and Structureâ 'Activity Relationships of a New Model of Arylpiperazines. 8.1 Computational Simulation of Ligandâ 'Receptor Interaction of 5-HT1AR Agonists with Selectivity over 1 ± 1 -Adrenoceptors. Journal of Medicinal Chemistry, 2005, 48, 2548-2558.	6.4	59
108	Effects of repeated administration with CP-55,940, a cannabinoid CB1 receptor agonist on the metabolism of the hepatic heme. International Journal of Biochemistry and Cell Biology, 2005, 37, 1620-1625.	2.8	4

#	Article	IF	Citations
109	Time course of opioid and cannabinoid gene transcription alterations induced by repeated administration with fluoxetine in the rat brain. Neuropharmacology, 2005, 49, 618-626.	4.1	47
110	Spontaneous cannabinoid withdrawal produces a differential time-related responsiveness in cannabinoid CB1 receptor gene expression in the mouse brain. Journal of Psychopharmacology, 2004, 18, 59-65.	4.0	13
111	Repeated administration with \hat{l} '9- tetrahydrocannabinol regulates $\hat{A}\mu$ -opioid receptor density in the rat brain. Journal of Psychopharmacology, 2004, 18, 54-58.	4.0	24
112	CHRONIC ETHANOL CONSUMPTION REGULATES CANNABINOID CB1 RECEPTOR GENE EXPRESSION IN SELECTED REGIONS OF RAT BRAIN. Alcohol and Alcoholism, 2004, 39, 88-92.	1.6	86
113	DIFFERENCES IN BASAL CANNABINOID CB1 RECEPTOR FUNCTION IN SELECTIVE BRAIN AREAS AND VULNERABILITY TO VOLUNTARY ALCOHOL CONSUMPTION IN FAWN HOODED AND WISTAR RATS. Alcohol and Alcoholism, 2004, 39, 297-302.	1.6	46
114	Role of endocannabinoid system in mental diseases. Neurotoxicity Research, 2004, 6, 213-224.	2.7	44
115	Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology, 2004, 46, 966-973.	4.1	205
116	Cannabinoid/Opioid Crosstalk in the Central Nervous System. Critical Reviews in Neurobiology, 2004, 16, 159-172.	3.1	72
117	Design and synthesis of S-(â°)-2-[[4-(napht-1-yl)piperazin-1-yl]methyl]-1,4-dioxoperhydropyrrolo[1,2-a]pyrazine (CSP-2503) using computational simulation. A 5-HT1A receptor agonist. Bioorganic and Medicinal Chemistry Letters, 2003. 13. 1429-1432.	2.2	16
118	Behavioural and gene transcription alterations induced by spontaneous cannabinoid withdrawal in mice. Journal of Neurochemistry, 2003, 85, 94-104.	3.9	36
119	Extinction of cocaine self-administration produces alterations in corticotropin releasing factor gene expression in the paraventricular nucleus of the hypothalamus. Molecular Brain Research, 2003, 117, 160-167.	2.3	13
120	Naltrexone for Alcohol Dependence. New England Journal of Medicine, 2002, 346, 1329-1331.	27.0	12
121	Gender differences in proenkephalin gene expression response to â^†9-tetrahydrocannabinol in the hypothalamus of the rat. Journal of Psychopharmacology, 2002, 16, 283-289.	4.0	17
122	Gastrin-releasing peptide mediated regulation of 5-HT neuronal activity in the hypothalamic paraventricular nucleus under basal and restraint stress conditions. Life Sciences, 2002, 70, 2953-2966.	4.3	13
123	Naltrexone improves outcome of a controlled drinking program. Journal of Substance Abuse Treatment, 2002, 23, 361-366.	2.8	30
124	Alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington's disease. Synapse, 2002, 44, 23-35.	1.2	114
125	Changes in prodynorphin and POMC gene expression in several brain regions of rat fetuses prenatally exposed to î"-tetrahydrocannabinol. Neurotoxicity Research, 2002, 4, 211-218.	2.7	20
126	Role of Gonadal Steroids in the Corticotropin-Releasing Hormone and Proopiomelanocortin Gene Expression Response to \hat{l} 'sup-9 //sup-7etrahydrocannabinol in the Hypothalamus of the Rat. Neuroendocrinology, 2001, 74, 185-192.	2.5	22

#	Article	IF	CITATIONS
127	Synthesis and Structureâ^'Activity Relationships of a New Model of Arylpiperazines. 5.1Study of the Physicochemical Influence of the Pharmacophore on 5-HT1A/α1-Adrenergic Receptor Affinity: Synthesis of a New Derivative with Mixed 5-HT1A/D2Antagonist Propertiesâ€. Journal of Medicinal Chemistry, 2001, 44, 186-197.	6.4	56
128	Biochemical, Electrophysiological and Neurohormonal Studies with B-20991, a Selective 5-HT _{1A} Receptor Agonist. Pharmacology, 2001, 62, 234-242.	2.2	4
129	Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. Journal of Neurochemistry, 2001, 78, 1415-1427.	3.9	197
130	Extinction of Cocaine Self-Administration Produces a Differential Time-Related Regulation of Proenkephalin Gene Expression in Rat Brain. Neuropsychopharmacology, 2001, 25, 185-194.	5 . 4	54
131	Prenatal Δ9-tetrahydrocannabinol exposure modifies proenkephalin gene expression in the fetal rat brain: sex-dependent differences. Developmental Brain Research, 2000, 120, 77-81.	1.7	44
132	Design and synthesis of 2-[4-[4-(m-(ethylsulfonamido)-phenyl)piperazin-1-yl]butyl]-1,3-dioxoperhydropyrrolo[1,2-c]imidazole (EF-7412) using neural networks. A selective derivative with mixed antagonist properties. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1679-1682.	2.2	12
133	Differential basal proenkephalin gene expression in dorsal striatum and nucleus accumbens, and vulnerability to morphine self-administration in Fischer 344 and Lewis rats. Brain Research, 1999, 821, 350-355.	2.2	97
134	Hypothalamus, anterior pituitary and adrenal gland involvement in the activation of adrenocorticotropin and corticosterone secretion by gastrin-releasing peptide. Brain Research, 1999, 828, 20-26.	2.2	22
135	Opioid and cannabinoid receptor-mediated regulation of the increase in adrenocorticotropin hormone and corticosterone plasma concentrations induced by central administration of Δ9-tetrahydrocannabinol in rats. Brain Research, 1999, 839, 173-179.	2.2	150
136	Pharmacological and biochemical interactions between opioids and cannabinoids. Trends in Pharmacological Sciences, 1999, 20, 287-294.	8.7	364
137	Time-dependent differences of repeated administration with \hat{l} 9-tetrahydrocannabinol in proenkephalin and cannabinoid receptor gene expression and G-protein activation by \hat{l} 4-opioid and CB1-cannabinoid receptors in the caudateâ \in putamen. Molecular Brain Research, 1999, 67, 148-157.	2.3	61
138	Chronic treatment with CP-55,940 regulates corticotropin releasing factor and proopiomelanocortin gene expression in the hypothalamus and pituitary gland of the rat. Life Sciences, 1999, 64, 905-911.	4.3	39
139	Cannabinoids as potential new analgesics. Life Sciences, 1999, 65, 675-685.	4.3	65
140	Repeated administration of Δ9-tetrahydrocannabinol produces a differential time related responsiveness on proenkephalin, proopiomelanocortin and corticotropin releasing factor gene expression in the hypothalamus and pituitary gland of the rat. Neuropharmacology, 1999, 38, 433-439.	4.1	23
141	Identification of Endocannabinoids and Cannabinoid CB ₁ Receptor mRNA in the Pituitary Gland. Neuroendocrinology, 1999, 70, 137-145.	2.5	78
142	RU-486 blocks stress-induced enhancement of proenkephalin gene expression in the paraventricular nucleus of rat hypothalamus. Brain Research, 1998, 786, 215-218.	2.2	13
143	Time-course of the cannabinoid receptor down-regulation in the adult rat brain caused by repeated exposure to ?9-tetrahydrocannabinol. Synapse, 1998, 30, 298-308.	1.2	111
144	Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. Molecular Brain Research, 1998, 55, 126-132.	2.3	82

#	Article	IF	CITATIONS
145	Preclinical pharmacology of B-20991, a 5-HT1A receptor agonist with anxiolytic activity. European Journal of Pharmacology, 1998, 344, 127-135.	3.5	13
146	Role of Corticotropin-Releasing Hormone in Gastrin-Releasing Peptide-Mediated Regulation of Corticotropin and Corticosterone Secretion in Male Rats. Neuroendocrinology, 1998, 68, 116-122.	2.5	31
147	Acute and repeated ECS treatment increases CRF, POMC and PENK gene expression in selected regions of the rat hypothalamus. NeuroReport, 1998, 9, 73-77.	1.2	9
148	î"9-Tetrahydrocannabinol increases proopiomelanocortin gene expression in the arcuate nucleus of the rat hypothalamus. European Journal of Pharmacology, 1997, 323, 193-195.	3.5	65
149	Δ-9-Tetrahydrocannabinol increases prodynorphin and proenkephalin gene expression in the spinal cord of the rat. Life Sciences, 1997, 61, PL39-PL43.	4.3	7 5
150	Differential 5-HT-mediated regulation of stress-induced activation of proopiomelanocortin (POMC) gene expression in the anterior and intermediate lobe of the pituitary in male rats. Brain Research, 1997, 772, 115-120.	2.2	15
151	Synthesis and Structureâ^'Activity Relationships of a New Model of Arylpiperazines. 1. 2-[[4-(o-Methoxyphenyl)piperazin-1-yl]methyl]-1,3- dioxoperhydroimidazo[1,5-a]pyridine:Â A Selective 5-HT1AReceptor Agonist. Journal of Medicinal Chemistry, 1996, 39, 4439-4450.	6.4	66
152	Neurochemical Evidence that Estrogen-Induced Suppression of Kappa-Opioid-Receptor-Mediated Regulation of Tuberoinfundibular Dopaminergic Neurons Is Prolactin-Independent. Neuroendocrinology, 1994, 59, 197-201.	2.5	24
153	The Effect of Short-Photoperiod Exposure on Tuberoinfundibular Dopamine Neurons in Male and Female Syrian Hamsters. Journal of Biological Rhythms, 1994, 9, 125-135.	2.6	8
154	Gender differences in tuberoinfundibular dopaminergic neuronal activity in a photoperiodic rodent (Mesocricetus auratus). Brain Research, 1994, 634, 159-162.	2.2	11
155	MDL-101,562 blocks the stimulatory effects of bombesin and gastrin-releasing peptide on hypothalamic dopaminergic neurons. European Journal of Pharmacology, 1994, 257, 199-202.	3.5	2
156	\hat{l} -Opioid receptor-mediated regulation of central dopaminergic neurons in the rat. European Journal of Pharmacology, 1993, 249, 107-112.	3.5	21
157	Kappa opioid receptor-mediated regulation of prolactin and a-melanocyte-stimulating hormone secretion in male and female rats. Life Sciences, 1993, 53, 795-801.	4.3	10
158	Sexual Differences in Kappa Opioid Receptor-Mediated Regulation of Tuberoinfundibular Dopaminergic Neurons. Neuroendocrinology, 1992, 55, 301-307.	2.5	34
159	Sexual differences in the activity of periventricular-hypophysial dopaminergic neurons in rats. Life Sciences, 1992, 51, 995-1001.	4.3	10
160	Plasmatic somatostatin as a marker of positive symptoms of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1992, 16, 203-210.	4.8	8
161	Sexual differences in the stimulatory effects of bombesin on tuberoinfundibular dopaminergic neurons. Brain Research, 1992, 598, 279-285.	2.2	12
162	Effects of immunoneutralization of dynorphin1â€"17 and dynorphin1â€"18 on the activity of central dopaminergic neurons in the male rat. Brain Research, 1992, 587, 301-305.	2,2	19

#	Article	IF	CITATION
163	Activation of tuberohypophysial dopamine neurons following intracerebroventricular administration of the selective kappa opioid receptor antagonist nor-binaltorphimine. Life Sciences, 1991, 48, 1143-1149.	4.3	14
164	Activation of tuberoinfundibular and tuberohypophysial dopamine neurons following intracerebroventricular administration of bombesin. Brain Research, 1991, 565, 142-147.	2.2	17
165	Kappa-Opioid-Receptor-Mediated Regulation of α-Melanocyte-Stimulating Hormone Secretion and Tuberohypophysial Dopaminergic Neuronal Activity. Neuroendocrinology, 1990, 52, 200-205.	2.5	25
166	Atrial natriuretic peptide-induced suppression of basal and dehydration-induced vasopressin secretion is not mediated by hypothalamic tuberohypophysial or tuberoinfundibular dopaminergic neurons. Brain Research, 1990, 527, 103-108.	2.2	11
167	Therapeutic potential of the cannabinoid receptor 2 in neuropsychiatry. , 0, , .		3