Paulo de Tarso Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4636186/publications.pdf

Version: 2024-02-01

14 papers

884 citations

840776 11 h-index 14 g-index

14 all docs 14 docs citations

times ranked

14

1078 citing authors

#	Article	IF	CITATIONS
1	A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Advances, 2014, 4, 37637-37644.	3.6	198
2	Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices. Analyst, The, 2016, 141, 4749-4756.	3.5	153
3	Colorimetric determination of nitrite in clinical, food and environmental samples using microfluidic devices stamped in paper platforms. Analytical Methods, 2015, 7, 7311-7317.	2.7	132
4	Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe ₃ O ₄ Nanoparticles, MWCNT, and Graphene Oxide. ACS Applied Materials & amp; Interfaces, 2016, 8, 11-15.	8.0	87
5	Paper-Based Colorimetric Biosensor for Tear Glucose Measurements. Micromachines, 2017, 8, 104.	2.9	74
6	A new insert sample approach to paper spray mass spectrometry: a paper substrate with paraffin barriers. Analyst, The, 2016, 141, 1707-1713.	3.5	57
7	Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Analytica Chimica Acta, 2017, 974, 63-68.	5.4	51
8	Amperometric detection of salivary \hat{l}_{\pm} -amylase on screen-printed carbon electrodes as a simple and inexpensive alternative for point-of-care testing. Sensors and Actuators B: Chemical, 2018, 258, 342-348.	7.8	47
9	Paper-based microfluidic devices on the crime scene: A simple tool for rapid estimation of post-mortem interval using vitreous humour. Analytica Chimica Acta, 2017, 974, 69-74.	5.4	36
10	Polyesterâ€toner electrophoresis microchips with improved analytical performance and extended lifetime. Electrophoresis, 2012, 33, 2660-2667.	2.4	22
11	Batch injection analysis towards auxiliary diagnosis of periodontal diseases based on indirect amperometric detection of salivary α-amylase on a cupric oxide electrode. Analytica Chimica Acta, 2018, 1041, 50-57.	5.4	14
12	Molecularly imprinted polymer as sorbent phase for disposable pipette extraction: A potential approach for creatinine analysis in human urine samples. Journal of Pharmaceutical and Biomedical Analysis, 2022, 211, 114625.	2.8	7
13	EVALUATION OF DIGITAL IMAGE CAPTURE DEVICES FOR COLORIMETRIC DETECTION ON PRINTED MICROZONES. Quimica Nova, 2014, , .	0.3	4
14	Chemical and thermal profile of Plectranthus amboinicus essential oil for its application as a bioherbicide. Scientia Plena, 2021, 17, .	0.2	2