Zhenghe Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4636064/publications.pdf

Version: 2024-02-01

322 papers 5,908 citations

71102 41 h-index 66 g-index

322 all docs 322 docs citations

times ranked

322

3362 citing authors

#	Article	IF	CITATIONS
1	A High-Efficiency 142–182-GHz SiGe BiCMOS Power Amplifier With Broadband Slotline-Based Power Combining Technique. IEEE Journal of Solid-State Circuits, 2022, 57, 371-384.	5.4	21
2	A Fully Integrated 3.5-/4.9-GHz Dual-Band GaN MMIC Doherty Power Amplifier Based on Multi-Resonant Circuits. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 416-431.	4.6	7
3	A 250–310 GHz Power Amplifier With 15-dB Peak Gain in 130-nm SiGe BiCMOS Process for Terahertz Wireless System. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 1-12.	3.1	16
4	An 18–50-GHz Δ–Σ Modulated Quasi-Continuous Digital Vector-Modulation Phase Shifter With Variable Gain Control. IEEE Microwave and Wireless Components Letters, 2022, 32, 60-63.	3.2	1
5	A Highly Linear GaN MMIC Doherty Power Amplifier Based on Phase Mismatch Induced AM–PM Compensation. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 1334-1348.	4.6	7
6	A Low Complexity Moving Average Nested GMP Model for Digital Predistortion of Broadband Power Amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 2070-2083.	5.4	6
7	A new feeding topology with internal 180° phase reversal for wideband seriesâ€fed slot array antennas. Microwave and Optical Technology Letters, 2021, 63, 1477-1482.	1.4	0
8	A Complexity-Reduced Harmonic-Cancellation Digital Predistortion for HF Transmitters. IEEE Microwave and Wireless Components Letters, 2021, 31, 529-532.	3.2	8
9	An Efficient Pruning Method of Digital Predistortion Suitable for Power Amplifiers with Scalable Output Power., 2021,,.		1
10	A Fully Integrated 47.6% Fractional Bandwidth GaN MMIC Distributed Efficient Power Amplifier With Modified Input Matching and Power Splitting Network. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3132-3145.	4.6	14
11	A 24–44 GHz Broadband Transmit–Receive Front End in 0.13-⟨i⟩μ⟨/i⟩m SiGe BiCMOS for Multistandard 5G Applications. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3463-3474.	4.6	10
12	Multi-Stream Spatial Digital Predistortion for Fully-Connected Hybrid Beamforming Massive MIMO Transmitters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 2998-3011.	5.4	15
13	2-D Magnitude-Selective Affine Function-Based Digital Predistortion for Concurrent Dual-Band Terminal Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 4209-4222.	4.6	7
14	A 160 GHz High Output Power and High DC-to-RF Efficiency Fundamental Oscillator in a 130-nm SiGe BiCMOS Process. , 2021, , .		2
15	A 24-29.5 GHz Voltage-Combined Doherty Power Amplifier Based on Compact Low-Loss Combiner. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2342-2346.	3.0	13
16	A Fully Integrated High-Efficiency Three-stage Doherty Power Amplifier for Small-cell application. , 2021, , .		1
17	Single and Dual Band Compatible Digital Predistortion for On-Demand Broadband Transmitters. , 2021,		0
18	A robust multiâ€sampling rate digital predistortion for ultraâ€broadband power amplifiers. Microwave and Optical Technology Letters, 2020, 62, 1041-1048.	1.4	1

#	Article	IF	CITATIONS
19	Wideband 5G MIMO Antenna With Integrated Orthogonal-Mode Dual-Antenna Pairs for Metal-Rimmed Smartphones. IEEE Transactions on Antennas and Propagation, 2020, 68, 2494-2503.	5.1	160
20	Power Scalable Beam-Oriented Digital Predistortion for Compact Hybrid Massive MIMO Transmitters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 4994-5006.	5.4	17
21	A 160 GHz High Output Power and High Efficiency Power Amplifier in a 130-nm SiGe BiCMOS Technology. , 2020, , .		4
22	A Broadband Millimeter-Wave Continuous-Mode Class-F Power Amplifier Based on the Deembedded Transistor Model. IEEE Microwave and Wireless Components Letters, 2020, 30, 609-612.	3.2	8
23	A Pattern-Reconfigurable Aircraft Antenna With Low Wind Drag. IEEE Transactions on Antennas and Propagation, 2020, 68, 4397-4405.	5.1	20
24	A Robust and Scalable Harmonic Cancellation Digital Predistortion Technique for HF Transmitters. IEEE Transactions on Microwave Theory and Techniques, 2020, 68, 2796-2807.	4.6	14
25	180ÂGHz highâ€gain cascode power amplifier in a 130Ânm SiGe process. Electronics Letters, 2020, 56, 498-501.	1.0	5
26	High-Aperture-Efficiency Metamirror Using Ultra-Small and Low-Profile Monopole Elements. , 2020, , .		0
27	Compact Co-Horizontally Polarized Full-Duplex Antenna With Omnidirectional Patterns. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1154-1158.	4.0	39
28	A Broadband and High-Gain Endfire Antenna Array Fed by Air-Substrate Parallel Strip Line. IEEE Transactions on Antennas and Propagation, 2019, 67, 5717-5722.	5.1	16
29	Linearization of a Directional Modulation Transmitter Using Low-Complexity Cascaded Digital Predistortion. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 4467-4478.	4.6	8
30	Dual-Beam Periodic Leaky-Wave Antenna With Reduced Beam Squinting. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2533-2537.	4.0	15
31	Dual-Polarized High-Gain Microstrip Antenna for MIMO Wireless Communication Systems. , 2019, , .		1
32	An Efficient Directional Modulation Transmitter With Novel Crest Factor Reduction Technique. IEEE Microwave and Wireless Components Letters, 2019, 29, 554-556.	3.2	10
33	A Broadband GaN Power Amplifier MMIC Utilizing a Non-Uniform Distributed Topology. , 2019, , .		2
34	High-Gain Leaky-Wave Endfire Antenna Based on Hansen–Woodyard Condition. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2155-2159.	4.0	18
35	A Broadband Linear Millimeter-Wave Power Amplifier With an Adaptive Bias Circuit. , 2019, , .		1
36	Beam-Oriented Digital Predistortion for Hybrid Beamforming Array Utilizing Over-the-Air Diversity Feedbacks., 2019,,.		7

#	Article	IF	Citations
37	A 10-3100 MHz Nested-mode Highly Efficient Power Amplifier for Multi-Octave Applications. , 2019, , .		4
38	A Fully Integrated C-band GaN MMIC Doherty Power Amplifier with High Gain and High Efficiency for 5G Application. , 2019, , .		7
39	A Ka-Band Highly Linear Power Amplifier with a Linearization Bias Circuit. , 2019, , .		6
40	A Dual-Band GaN MMIC Power Amplifier With Hybrid Operating Modes for 5G Application. IEEE Microwave and Wireless Components Letters, 2019, 29, 228-230.	3.2	45
41	A Fully Integrated C-Band GaN MMIC Doherty Power Amplifier With High Efficiency and Compact Size for 5G Application. IEEE Access, 2019, 7, 71665-71674.	4.2	53
42	Halfâ€mode dielectric waveguide antenna fed by a microâ€strip line with air media for endfire radiation. IET Microwaves, Antennas and Propagation, 2019, 13, 854-858.	1.4	0
43	A Compact Ka/Q Dual-Band GaAs MMIC Doherty Power Amplifier With Simplified Offset Lines for 5G Applications. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 3110-3121.	4.6	33
44	Low-Profile Compact Circularly Polarized Slot-Etched PIFA Using Even and Odd Modes. IEEE Transactions on Antennas and Propagation, 2019, 67, 4189-4194.	5.1	22
45	An Open Cavity Leaky-Wave Antenna With Vertical-Polarization Endfire Radiation. IEEE Transactions on Antennas and Propagation, 2019, 67, 3455-3460.	5.1	31
46	Linearization for Hybrid Beamforming Array Utilizing Embedded Over-the-Air Diversity Feedbacks. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 5235-5248.	4.6	43
47	Microstrip-Fed Endfire Antennas with High Gain and Stable Radiation Pattern. , 2019, , .		0
48	The Nested-Mode Power Amplifiers for Highly Efficient Multi-Octave Applications. IEEE Transactions on Microwave Theory and Techniques, 2019, 67, 5114-5126.	4.6	5
49	Multiband and Multimode Concurrent PA With Novel Intermodulation Tuning Network for Linearity Improvement. IEEE Microwave and Wireless Components Letters, 2018, 28, 248-250.	3.2	12
50	Wideband Dual-Mode Patch Antenna With Compact CPW Feeding Network for Pattern Diversity Application. IEEE Transactions on Antennas and Propagation, 2018, 66, 2628-2633.	5.1	37
51	Reconfigurable 2-bit Fixed-Frequency Beam Steering Array Based on Microstrip Line. IEEE Transactions on Antennas and Propagation, 2018, 66, 683-691.	5.1	44
52	A design methodology of envelope tracking power amplifier based on harmonic impedance tuning. Microwave and Optical Technology Letters, 2018, 60, 639-642.	1.4	5
53	Lowâ€profile circularly polarised patch–ring antenna with compact feeding network. IET Microwaves, Antennas and Propagation, 2018, 12, 410-415.	1.4	7
54	Reduced Cost Digital Predistortion Only With In-Phase Feedback Signal. IEEE Microwave and Wireless Components Letters, 2018, 28, 257-259.	3.2	7

#	Article	IF	Citations
55	A Wideband 28 GHz Fully-Integrated Power Amplifier in 65 nm CMOS Technology. , 2018, , .		O
56	Sliding the Radiating Aperture of Multi-Beam Transmitarray with Low Scan Loss. , 2018, , .		1
57	Three Methods to Generate Orbital Angular Momentum Beams in Microwaves. , 2018, , .		2
58	Accurate Model of the Metasurface-loaded Waveguide. , 2018, , .		0
59	A High Efficiency Asymmetric Doherty Power Amplifier Using Symmetric Devices for 5G Application. , 2018, , .		1
60	3.5-OHz High-Efficiency Broadband Asymmetric Doherty Power Amplifier for 5G Applications., 2018,,.		7
61	A C-band GaAs Doherty Power Amplifier MMIC with Compact Size and 1-GHz Bandwidth. , 2018, , .		4
62	Low Loss Millimeter Wave Antennas Using Modified Silicon Micromachining Process., 2018,,.		0
63	Multi-Beam Antennas for Massive MIMO System with Vertical Spatial Filtering Technique. , 2018, , .		0
64	A Compact and Broadband Ka-band Asymmetrical GaAs Doherty Power Amplifier MMIC for 5G Communications. , $2018, \ldots$		17
65	Planar Air-Filled Terahertz Antenna Array Based on Channelized Coplanar Waveguide Using Hierarchical Silicon Bulk Micromachining. IEEE Transactions on Antennas and Propagation, 2018, 66, 5318-5325.	5.1	20
66	Beam-Oriented Digital Predistortion for 5G Massive MIMO Hybrid Beamforming Transmitters. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 3419-3432.	4.6	120
67	Linear Multibeam Transmitarray Based on the Sliding Aperture Technique. IEEE Transactions on Antennas and Propagation, 2018, 66, 3948-3958.	5.1	15
68	An Energy-Efficient <inline-formula> <tex-math notation="LaTeX">\$Ka\$ </tex-math> </inline-formula> / <inline-formula> <tex-math notation="LaTeX">\$Q\$ </tex-math> </inline-formula> <tex-math notation="LaTeX">\$math" notation="LaTeX">\$mu\$ </tex-math> <inline-formula> <inline-f< th=""><th>3.2</th><th>22</th></inline-f<></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula></inline-formula>	3.2	22
69	and Wireless Components Letters, 2018, 28, 530-532. High-gain and low-profile microstrip antenna using slot-loaded TM50 mode., 2018, , .		4
70	A robust and broadband digital predistortion utilizing negative feedback iteration., 2018,,.		12
71	A simple method to generate orbital angular momentum beams with microstrip ring antenna. , 2018, , .		2
72	The Fano resonant model of two-arm resonator in waveguide. , 2018, , .		0

#	Article	IF	CITATIONS
73	A novel 1â€ŧoâ€3 feeding network with radiation contribution. Microwave and Optical Technology Letters, 2018, 60, 2242-2245.	1.4	1
74	Narrow-Width Periodic Leaky-Wave Antenna Array for Endfire Radiation Based on Hansen–Woodyard Condition. IEEE Transactions on Antennas and Propagation, 2018, 66, 6393-6396.	5.1	50
75	A Wide-Band Wide-Beam Dielectric Resonator Antenna. Recent Advances in Electrical and Electronic Engineering, 2018, 11, 397-401.	0.3	1
76	Bidirectional sameâ€sense circularly polarized antenna using slotâ€coupled backâ€toâ€back patches. Microwave and Optical Technology Letters, 2017, 59, 645-648.	1.4	16
77	Pattern synthesis for equal-gain coverage in air-to-ground communication. Microwave and Optical Technology Letters, 2017, 59, 750-753.	1.4	0
78	Air-Filled Long Slot Leaky-Wave Antenna Based on Folded Half-Mode Waveguide Using Silicon Bulk Micromachining Technology for Millimeter-Wave Band. IEEE Transactions on Antennas and Propagation, 2017, 65, 3409-3418.	5.1	35
79	60-GHz air-cavity-fed slot antenna array using modified silicon micromachining process. , 2017, , .		3
80	Low Computational Complexity Digital Predistortion Based on Direct Learning With Covariance Matrix. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 4274-4284.	4.6	22
81	Omnidirectional Dual-Polarized Antenna With Sabre-Like Structure. IEEE Transactions on Antennas and Propagation, 2017, 65, 3221-3225.	5.1	31
82	Generating and Measuring Tunable Orbital Angular Momentum Radio Beams With Digital Control Method. IEEE Transactions on Antennas and Propagation, 2017, 65, 899-902.	5.1	29
83	Concurrent dualâ€band digital predistortion implemented with reduced lookâ€upâ€tables. Electronics Letters, 2017, 53, 802-804.	1.0	6
84	A Fixed-Beam Leaky-Wave Cavity-Backed Slot Antenna Manufactured by Bulk Silicon MEMS Technology. IEEE Transactions on Antennas and Propagation, 2017, 65, 4399-4405.	5.1	31
85	Breaking the field symmetry of transmission lines. , 2017, , .		0
86	Magnetic current synthesis using cavity structures. , 2017, , .		1
87	Broadband and Low-Profile Microstrip Antenna Using Strip-Slot Hybrid Structure. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 3118-3121.	4.0	55
88	Low-Sidelobe Air-Filled Slot Array Fabricated Using Silicon Micromachining Technology for Millimeter-Wave Application. IEEE Transactions on Antennas and Propagation, 2017, 65, 4067-4074.	5.1	34
89	A millimeter-wave sequential power amplifier. , 2017, , .		0
90	A Millimeter-Wave Micromachined Air-Filled Slot Antenna Fed by Patch. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7, 1683-1690.	2.5	20

#	Article	IF	CITATIONS
91	Systematic Crest Factor Reduction and Efficiency Enhancement of Dual-Band Power Amplifier Based Transmitters. IEEE Transactions on Broadcasting, 2017, 63, 111-122.	3.2	15
92	A Dual-Beam Eight-Element Antenna Array With Compact CPWG Crossover Structure. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1269-1272.	4.0	12
93	A millimeter-wave patch-fed slot antenna with air cavity. , 2017, , .		O
94	Modified silicon micromachining process with air cavities and silicon-to-air transitions for low-loss millimeter-wave antenna tape-out. , 2017, , .		0
95	Metamaterial-inspired microstrip antennas for wireless communication systems., 2017,,.		1
96	The propagation of pulse in dispersive linear systems. IET Microwaves, Antennas and Propagation, 2017, 11, 1754-1759.	1.4	0
97	Hybrid cylindrical dielectric resonator antenna with monopole for triâ€polarized operation. Microwave and Optical Technology Letters, 2016, 58, 635-638.	1.4	5
98	An experimental system for generating and identifying tunable orbital angular momentum in radio. , 2016, , .		4
99	$60~\mbox{GHz}$ air cavity antenna array with checkerboard structure using MEMS micromachining process. , $2016,$, .		2
100	Circular polarization transmitarray element with linear polarization feed., 2016,,.		2
101	Two designs of bidirectional same-sense circularly polarized antennas with cavity structures. , 2016, , .		1
102	Dual-layered metalens for polarization-agile orbital angular momentum waves. , 2016, , .		4
103	Horizontally polarized omnidirectional antenna using open-ended cavity. , 2016, , .		1
104	Antennas wrapped up on slender column. , 2016, , .		0
105	Broadband hybrid dipole antenna. , 2016, , .		0
106	Horizontally Polarized Omnidirectional Antenna Array Using Cascaded Cavities. IEEE Transactions on Antennas and Propagation, 2016, 64, 5454-5459.	5.1	36
107	A 1.1GHz bandwidth, 46%–62% efficiency Continuous Mode Doherty Power Amplifier. , 2016, , .		6
108	A Broadband Doherty Power Amplifier Based on Continuous-Mode Technology. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 4505-4517.	4.6	125

#	Article	IF	CITATIONS
109	Low Feedback Sampling Rate Digital Predistortion for Wideband Wireless Transmitters. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 3528-3539.	4.6	45
110	60-GHz Air Substrate Leaky-Wave Antenna Based on MEMS Micromachining Technology. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, 6, 1656-1662.	2.5	33
111	Wideband Triangular-Cavity-Cascaded Antennas. IEEE Transactions on Antennas and Propagation, 2016, 64, 2840-2847.	5.1	13
112	A Dual-Environment Active RFID Tag Antenna Mountable on Metallic Objects. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1759-1762.	4.0	11
113	MIMO Mobile Handset Antenna Merging Characteristic Modes for Increased Bandwidth. IEEE Transactions on Antennas and Propagation, 2016, 64, 2660-2667.	5.1	95
114	Compact allâ€metallic cavityâ€cascaded antenna. Electronics Letters, 2016, 52, 413-414.	1.0	14
115	All-Metal Antenna Array Based on Microstrip Line Structure. IEEE Transactions on Antennas and Propagation, 2016, 64, 351-355.	5.1	26
116	Micromachined 60 GHz postsupported patch antenna with flipâ€chip interconnect. Microwave and Optical Technology Letters, 2015, 57, 2706-2710.	1.4	1
117	Design of an annual dielectric loaded cylindrical dielectric resonator Antenna for broadband monopole-type radiation. , 2015 , , .		0
118	A three-layer transmitarray element with 360° phase range., 2015,,.		1
119	A novel focusing lens conical horn antenna loaded with dielectric. , 2015, , .		7
120	Dualâ€port planar MIMO antenna with ultraâ€high isolation and orthogonal radiation patterns. Electronics Letters, 2015, 51, 7-8.	1.0	16
121	Wideband substrate integrated waveguide cavityâ€backed spiralâ€shaped patch antenna. Microwave and Optical Technology Letters, 2015, 57, 332-337.	1.4	4
122	A Hemispherical 3-D Null Steering Antenna for Circular Polarization. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 803-806.	4.0	37
123	Planar Printed Multi-Resonant Antenna for Octa-Band WWAN/LTE Mobile Handset. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1734-1737.	4.0	48
124	Compact Single-Feed Dual-Mode Antenna for Active RFID Tag Application. IEEE Transactions on Antennas and Propagation, 2015, 63, 5190-5194.	5.1	10
125	Annular Column Loaded Cylindrical Dielectric Resonator Antenna for Wideband Conical Radiation. IEEE Transactions on Antennas and Propagation, 2015, 63, 5874-5878.	5.1	29
126	A Novel Low-Profile Hepta-Band Handset Antenna Using Modes Controlling Method. IEEE Transactions on Antennas and Propagation, 2015, 63, 799-804.	5.1	38

#	Article	IF	Citations
127	A planar reconfigurable antenna with bidirectional end-fire and broadside radiation patterns. Microwave and Optical Technology Letters, 2014, 56, 1942-1946.	1.4	2
128	A Simplified Hemispherical 2-D Angular Space Null Steering Approach for Linearly Polarization. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1628-1631.	4.0	20
129	Design of a V-band power amplifier/combiner based on spatial power-combining technique. , 2014, , .		1
130	Compact helical antenna with small ground fed by spiralâ€shaped microstrip line. Electronics Letters, 2014, 50, 336-338.	1.0	3
131	A bidirectional waveguide antenna with polarization reconfigurable capability. Microwave and Optical Technology Letters, 2014, 56, 422-427.	1.4	7
132	Study of a planar magnetic-electric dipole antenna. , 2014, , .		2
133	Wideband unidirectional circularly polarised slot array with integrated feeding network. Electronics Letters, 2014, 50, 1039-1040.	1.0	10
134	Metallic short backfire antenna with halved size and wideband characteristics. Electronics Letters, 2014, 50, 907-908.	1.0	2
135	Energy-efficient power amplifier techniques for TD-SCDMA and TD-LTE multi-standard wireless communications. , 2014, , .		0
136	A novel dual-polarised dielectric resonator antenna designed for WLAN applications. , 2014, , .		2
137	A Novel Null Scanning Antenna Using Even and Odd Modes of a Shorted Patch. IEEE Transactions on Antennas and Propagation, 2014, 62, 1903-1909.	5.1	65
138	A wideband circularly polarized metallic cavity antenna fed with an Lâ€shaped probe. Microwave and Optical Technology Letters, 2014, 56, 2398-2403.	1.4	2
139	A compact wideband quad-element planar antenna for WiMAX MIMO Application. , 2014, , .		1
140	A concurrent dual-band 1.9& \pm x2013; 2.6-GHz Doherty power amplifier with Intermodulation impedance tuning. , 2014, , .		7
141	A novel conical horn antenna loaded with ball cone dielectric. , 2014, , .		4
142	2-D Planar Scalable Dual-Polarized Series-Fed Slot Antenna Array Using Single Substrate. IEEE Transactions on Antennas and Propagation, 2014, 62, 2280-2283.	5.1	26
143	Efficient Pruning Technique of Memory Polynomial Models Suitable for PA Behavioral Modeling and Digital Predistortion. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 2290-2299.	4.6	27
144	Array of spatial power combination for wide angle sector coverage. Microwave and Optical Technology Letters, 2014, 56, 2990-2993.	1.4	0

#	Article	IF	CITATIONS
145	A Wideband Isotropic Radiated Planar Antenna Using Sequential Rotated L-Shaped Monopoles. IEEE Transactions on Antennas and Propagation, 2014, 62, 1461-1464.	5.1	71
146	Ultra-Compact Three-Port MIMO Antenna With High Isolation and Directional Radiation Patterns. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1545-1548.	4.0	47
147	A Wideband Sequential-Phase Fed Circularly Polarized Patch Array. IEEE Transactions on Antennas and Propagation, 2014, 62, 3890-3893.	5.1	123
148	Wideband triâ€port MIMO antenna with compact size and directional radiation pattern. Electronics Letters, 2014, 50, 1261-1262.	1.0	15
149	A Circularly Polarized Pattern Diversity Antenna for Hemispherical Coverage. IEEE Transactions on Antennas and Propagation, 2014, 62, 5365-5369.	5.1	31
150	Design of Omnidirectional Dual-Polarized Antenna in Slender and Low-Profile Column. IEEE Transactions on Antennas and Propagation, 2014, 62, 2323-2326.	5.1	58
151	Improved Main-Beam Nulling Through Single Switchable Displaced Element for Small Scale Adaptive Array. IEEE Transactions on Antennas and Propagation, 2014, 62, 2522-2530.	5.1	4
152	A Wideband High-Isolated Dual-Polarized Patch Antenna Using Two Different Balun Feedings. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1617-1619.	4.0	54
153	Fabrication and Measurement Techniques of Wearable and Flexible Antennas. WIT Transactions on State-of-the-art in Science and Engineering, 2014, , 7-23.	0.0	3
154	Dual-Band Circularly Polarized Rotated Patch Antenna With a Parasitic Circular Patch Loading. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 492-495.	4.0	59
155	A Sequential-Phase Feed Using a Circularly Polarized Shorted Loop Structure. IEEE Transactions on Antennas and Propagation, 2013, 61, 1443-1447.	5.1	93
156	An experiment to extract the dynamic nonlinear model of a millimeter wave communication system with ultra-wideband signal. , 2013 , , .		0
157	A Low-Cost Dual-Polarized Array Antenna Etched on a Single Substrate. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 265-268.	4.0	36
158	Design of A CPWâ€FED Câ€Shaped Slot Array Antenna for Coal Mine/Tunnel Applications. Microwave and Optical Technology Letters, 2013, 55, 1784-1789.	1.4	6
159	Design of a Ring Probe-Fed Metallic Cavity Antenna for Satellite Applications. IEEE Transactions on Antennas and Propagation, 2013, 61, 4836-4839.	5.1	18
160	A Wideband Dual-Polarized Slot Antenna. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1010-1013.	4.0	35
161	A pattern reconfigurable monopole parasitic array antenna for WLAN applications. , 2013, , .		1
162	Enhanced Analysis and Design Method of Concurrent Dual-Band Power Amplifiers With Intermodulation Impedance Tuning. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 4544-4558.	4.6	58

#	Article	IF	Citations
163	A Waveguide Antenna With Bidirectional Circular Polarizations of the Same Sense. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 559-562.	4.0	24
164	Design and investigation of a novel beam-steering cylindrical dielectric resonator antenna., 2013,,.		0
165	Design of Compact Dual-Band Power Dividers With Frequency-Dependent Division Ratios Based on Multisection Coupled Line. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3, 467-475.	2.5	29
166	Bidirectional rectangular ring antenna for coal mine/tunnel communication. Microwave and Optical Technology Letters, 2013, 55, 1412-1416.	1.4	3
167	A novel antenna design with horizontally polarized omnidirectional pattern for WLAN applications. , 2013, , .		1
168	A Dual-Loop Antenna in a Cage Structure for Horizontally Polarized Omnidirectional Pattern. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1252-1255.	4.0	5
169	Design and investigation of dielectric resonator antenna oscillator (DRAO) in electronic toll collection (ETC) system. , $2013, \ldots$		3
170	Experiment on underground propagation characteristic using CC110-based WSN., 2013,,.		0
171	A tri-polarized antenna with a capacitive coupling strip for improving isolation. , 2013, , .		1
172	A Broadband Patch Antenna With Tripolarization Using Quasi-Cross-Slot and Capacitive Coupling Feed. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 832-835.	4.0	33
173	A novel design method of concurrent dual-band power amplifiers including impedance tuning at inter-band modulation frequencies. , 2013, , .		4
174	A Bidirectional Leftâ€Hand Circularly Polarized Antenna Using Dual Rotated Patches. Microwave and Optical Technology Letters, 2013, 55, 2044-2047.	1.4	15
175	A dual-band circularly-polarized stacked patch antenna with a small frequency-ratio., 2013,,.		3
176	A Bidirectional High-Gain Cascaded Ring Antenna for Communication in Coal Mine. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 761-764.	4.0	36
177	Isotropic Radiation From a Compact Planar Antenna Using Two Crossed Dipoles. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1338-1341.	4.0	53
178	An electrically large circularly polarized metallic cavity antenna with wide beamwidth for satellite applications. , $2012, \ldots$		5
179	Diversity Measurements for On-Body Channels Using a Tri-Polarization Antenna at 2.45 GHz. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1285-1288.	4.0	15
180	Design of a dual-band metallic Febry-Perot cavity antenna using dual-mode resonances. , 2012, , .		0

#	Article	IF	CITATIONS
181	High efficiency and wide band CLASS-J power amplifier using $2\<sup\>nd\</sup\>$ harmonic microstrip stub matching. , $2012,$, .		4
182	A novel approach to realize flat gain response in beam-switching array. , 2012, , .		0
183	Mainbeam nulling through singular element for adaptive array. , 2012, , .		0
184	Impact of 3D rotation on the characteristics of dual-polarized antenna systems. , 2012, , .		0
185	Forward behavioral modeling of concurrent dual-band power amplifiers using extended real valued time delay neural networks. , 2012, , .		4
186	An isotropic-radiated planar antenna using two crossed dipoles. , 2012, , .		2
187	A Compact Eighteen-Port Antenna Cube for MIMO Systems. IEEE Transactions on Antennas and Propagation, 2012, 60, 445-455.	5.1	30
188	Small-Scale Variations of Cross-Polar Discrimination in Nakagami-m Fading Channels. IEEE Communications Letters, 2012, 16, 1820-1823.	4.1	3
189	Compact Asymmetrical T-Shaped Dielectric Resonator Antenna for Broadband Applications. IEEE Transactions on Antennas and Propagation, 2012, 60, 1611-1615.	5.1	90
190	A MNG-TL Loop Antenna Array With Horizontally Polarized Omnidirectional Patterns. IEEE Transactions on Antennas and Propagation, 2012, 60, 2702-2710.	5.1	113
191	A Bidirectional Endfire Array With Compact Antenna Elements for Coal Mine/Tunnel Communication. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 342-345.	4.0	33
192	Maximum eigenvalues and capacity of MIMO systems using matching networks. , 2012, , .		0
193	A Compact Wideband Microstrip Crossover. IEEE Microwave and Wireless Components Letters, 2012, 22, 254-256.	3.2	68
194	High-gain hybrid monopole dielectric resonator antenna. , 2012, , .		2
195	Polarization reconfigurable dielectric resonator antenna with a CPW-to-slotline feed. , 2012, , .		4
196	A compact common-mode filter for GHz differential signals using defected ground structure and shorted microstrip stubs. , 2012, , .		6
197	Design of a Wideband Horizontally Polarized Omnidirectional Printed Loop Antenna. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 49-52.	4.0	105
198	Axial Ratio Bandwidth Enhancement of 60-GHz Substrate Integrated Waveguide-Fed Circularly Polarized LTCC Antenna Array. IEEE Transactions on Antennas and Propagation, 2012, 60, 4619-4626.	5.1	190

#	Article	IF	Citations
199	Design of dual-band multi-way Doherty power amplifiers. , 2012, , .		1
200	High-gain silicon based on-chip dielectric resonator antenna at 60GHz., 2012,,.		1
201	Design of Dual-Polarized Monopole-Slot Antenna With Small Volume and High Isolation. IEEE Transactions on Antennas and Propagation, 2012, 60, 2511-2514.	5.1	30
202	Compact Azimuthal Omnidirectional Dual-Polarized Antenna Using Highly Isolated Colocated Slots. IEEE Transactions on Antennas and Propagation, 2012, 60, 4037-4045.	5.1	110
203	Investigation of a New Radiating Mode and the Traditional Dominant Mode in Rectangular Dielectric Resonator Antenna. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 909-912.	4.0	6
204	Periodic Leaky-Wave Antenna Array With Horizontally Polarized Omnidirectional Pattern. IEEE Transactions on Antennas and Propagation, 2012, 60, 3165-3173.	5.1	27
205	Low sampling rate digital predistortion of power amplifier assisted by bandpass RF filter. , 2012, , .		3
206	A Beam-Switching Antenna Array With Shaped Radiation Patterns. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 818-821.	4.0	24
207	Distribution of cross-polar discrimination in Nakagami-m fading channels. , 2012, , .		0
208	A Compact Hepta-Band Loop-Inverted F Reconfigurable Antenna for Mobile Phone. IEEE Transactions on Antennas and Propagation, 2012, 60, 389-392.	5.1	174
209	ISM 433-MHz Miniaturized Antenna Using the Shielding Box of Mobile Terminals. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 330-333.	4.0	9
210	Compact dielectricâ€resonatorâ€onâ€patch antenna with bandwidth enhancement. Microwave and Optical Technology Letters, 2012, 54, 66-71.	1.4	4
211	A metallic Febry-Perot cavity antenna with slot-type FSS and hybrid lateral boundaries for high aperture efficiency. , 2011, , .		0
212	A novel miniaturized antenna for ISM 433MHz wireless system., 2011,,.		0
213	Dual-Band Circularly Polarized Stacked Annular-Ring Patch Antenna for GPS Application. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 49-52.	4.0	74
214	Dual-Mode Loop Antenna With Compact Feed for Polarization Diversity. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 95-98.	4.0	43
215	Stacked CP patch antenna with broad impedance and AR bandwidth. , $2011, , .$		4
216	Design of a Coplanar Integrated Microstrip Antenna for GPS/ITS Applications. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 458-461.	4.0	17

#	Article	IF	CITATIONS
217	Compact Heptaband Reconfigurable Loop Antenna for Mobile Handset. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 1162-1165.	4.0	80
218	Three designs of polarization diversity antenna for WLAN application. , 2011, , .		2
219	Design and Linearization of Concurrent Dual-Band Doherty Power Amplifier With Frequency-Dependent Power Ranges. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 2537-2546.	4.6	147
220	Channel capacity estimation in TDMS-based MIMO measurements. Tsinghua Science and Technology, 2011, 16, 371-376.	6.1	1
221	Spin electromagnetic field and dipole: A localized and quantized field. Science Bulletin, 2011, 56, 1461-1470.	1.7	0
222	A novel concurrent dualâ€mode classâ€e PA using dualâ€band stub tapped transformer. Microwave and Optical Technology Letters, 2011, 53, 171-174.	1.4	4
223	Compact hybrid CPWâ€FED slot antenna array with pattern diversity. Microwave and Optical Technology Letters, 2011, 53, 884-888.	1.4	5
224	A compact CPWâ€FED circular patch antenna with pattern and polarization diversities. Microwave and Optical Technology Letters, 2011, 53, 968-972.	1.4	8
225	Channel capacity study of polarization reconfigurable slot antenna for indoor MIMO system. Microwave and Optical Technology Letters, 2011, 53, 1209-1213.	1.4	9
226	High frequency response of carbon nanotube thin film speaker in gases. Journal of Applied Physics, $2011,110,$	2.5	61
227	Compact CPW-Fed Dielectric Resonator Antenna With Dual Polarization. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 544-547.	4.0	72
228	Experimental Investigation of New Radiating Mode in Rectangular Hybrid Dielectric Resonator Antenna. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 91-94.	4.0	13
229	High-Permittivity Substrate Multiresonant Antenna Inside Metallic Cover of Laptop Computer. IEEE Antennas and Wireless Propagation Letters, 2011, 10, 1092-1095.	4.0	9
230	A novel broadband VHF SiC MESFET classâ€E high power amplifier. Microwave and Optical Technology Letters, 2010, 52, 272-276.	1.4	3
231	A novel hybrid planar SIW magic tee and monopulse antenna. Microwave and Optical Technology Letters, 2010, 52, 686-689.	1.4	10
232	Design of asymmetrical spurline filter for a high power sic MESFET class-E power amplifier. Microwave and Optical Technology Letters, 2010, 52, 1650-1652.	1.4	6
233	A compact DVBâ€H antenna with varactorâ€ŧuned matching circuit. Microwave and Optical Technology Letters, 2010, 52, 1786-1789.	1.4	15
234	Hexagonal patch antenna with Tâ€shaped slot for frequency switching and conical radiation. Microwave and Optical Technology Letters, 2010, 52, 2585-2588.	1.4	0

#	Article	IF	Citations
235	Development of low cost radiated emission measurement system. , 2010, , .		2
236	The research of the frequency dependency of UWB antenna radiation pattern. , 2010, , .		2
237	An Endfire Beam-Switchable Antenna Array Used in Vehicular Environment. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 195-198.	4.0	29
238	Edge diffraction effects on the RCS analysis of antenna array. , 2010, , .		1
239	The simulation application of the UWB sinuquotient in FDTD. , 2010, , .		0
240	A TIS test solution for stand alone GPS phones. , 2010, , .		0
241	Polarization Reconfigurable Slot Antenna With a Novel Compact CPW-to-Slotline Transition for WLAN Application. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 252-255.	4.0	103
242	A novel class-E power amplifier with an asymmetrical spurline filter and its linearization. , 2010, , .		0
243	A novel broadband class E power amplifier with inductance feedback. , 2010, , .		0
244	A Dual-Polarization Slot Antenna Using a Compact CPW Feeding Structure. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 191-194.	4.0	158
245	Low-Profile Planar Tripolarization Antenna for WLAN Communications. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 83-86.	4.0	62
246	Linearity analysis of direct digital chirp synthesizer in the presence of amplitude quantization. , 2010, , .		0
247	Compact dual-polarized antenna combining printed monopole and half-slot antenna for MIMO applications. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	14
248	A dualâ€polarized printed UWB antenna. Microwave and Optical Technology Letters, 2009, 51, 1177-1180.	1.4	5
249	Analysis and design of tapered slot antenna for ultra-wideband applications. Tsinghua Science and Technology, 2009, 14, 1-6.	6.1	10
250	A high power SiC MESFET class-E power amplifier with an asymmetrical spurline resonator. , 2009, , .		1
251	A Quadband Antenna With Reconfigurable Feedings. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 1069-1071.	4.0	22
252	A Tripolarization Antenna Fed by Proximity Coupling and Probe. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 465-467.	4.0	41

#	Article	IF	Citations
253	Pattern and Polarization Diversity Antenna With High Isolation for Portable Wireless Devices. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 209-211.	4.0	67
254	A compact wideband planar diversity antenna for mobile handsets. Microwave and Optical Technology Letters, 2008, 50, 87-91.	1.4	14
255	Novel planar taperedâ€slotâ€fed UWB antenna. Microwave and Optical Technology Letters, 2008, 50, 2280-2283.	1.4	3
256	A UWB bandâ€notched antenna with novel branches on the back of substrate. Microwave and Optical Technology Letters, 2008, 50, 3274-3278.	1.4	4
257	A low cost trigger frequency alterable ultra-wide band ambipolar pulses generator. , 2008, , .		6
258	Analysis and design of a novel compact UWB antenna. , 2008, , .		3
259	A reconfigurable compact antenna for DVBH application. , 2008, , .		3
260	A UWB antenna with novel L branches on ground for band-notching application., 2008,,.		2
261	8-Element circularly polarized microstrip array antenna. , 2008, , .		0
262	A hybrid slot and inverted L antenna. , 2008, , .		0
263	Planar UWB antenna array for multifunctional wireless communication system. , 2008, , .		0
264	A conformal tri-polarization antenna. , 2008, , .		3
265	Investigation of wideband printed dipole arrays with parasitic elements for wireless mesh network (WMN) applications. , 2008, , .		0
266	Design of unsymmetrical anti-podal taper slot element for array antenna. , 2008, , .		0
267	A new retarded PEEC model for antenna. , 2008, , .		3
268	SIW slot array with Choke Grooves. , 2008, , .		2
269	An endfire phased array used in Wireless Access for Vehicular Environments (WAVE)., 2008,,.		2
270	A Four-Element Antenna System for Mobile Phones. IEEE Antennas and Wireless Propagation Letters, 2007, 6, 655-658.	4.0	48

#	Article	IF	CITATIONS
271	UWB Channel Modeling and Simulation. , 2007, , .		3
272	A triple-band compact monopole antenna for mobile handsets., 2007,,.		2
273	A Novel Compact Varactor-Tunable PIFA Antenna for ISDB-T Application. , 2007, , .		2
274	A Novel Dual-Band Printed Diversity Antenna for Mobile Terminals. IEEE Transactions on Antennas and Propagation, 2007, 55, 2088-2096.	5.1	193
275	Design of Planar ESPAR Antenna by Using Sidelobe Reduction Algorithm. , 2007, , .		10
276	Design and Simulation of Linear Series-fed Low-sidelobe Microstrip Antenna Array., 2007,,.		19
277	Design of Suspended Patch Antenna with EBG Substrate. , 2007, , .		1
278	Extended MagPEEC Model Including Dispersive Medium., 2007,,.		2
279	A Novel Compact Dual-band Printed Monopole Antenna. , 2007, , .		0
280	A Compact High Performance Linear Series-fed Printed Circuit Antenna Array., 2007,,.		4
281	A Triple-Band Monopole Antenna for Mobile Handsets and the Effect of the Handset Components. , 2007, , .		1
282	A Novel Compact Dual-band Capacitive-Loaded Printed Monopole Antenna., 2007,,.		0
283	The Implementation of a Novel Adaptive Beam-forming Method Based on LMS Algorithm. , 2007, , .		1
284	A Novel Wide Beam Dual-band Dual-Polarization Stacked Microstrip - Dielectric Antenna., 2007,,.		7
285	A Novel Ultra-Wideband Microstrip-Line Fed Wide-Slot Antenna Having Frequency Band-Notch Function. , 2007, , .		11
286	Novel switched sector beam planar UWB antenna. Microwave and Optical Technology Letters, 2007, 49, 1185-1187.	1.4	8
287	A novel compact reconfigurable polarization and pattern antenna. Microwave and Optical Technology Letters, 2007, 49, 2802-2805.	1.4	7
288	Microstrip Interdigital Hairpin Resonator With an Optimal Physical Length. IEEE Microwave and Wireless Components Letters, 2006, 16, 672-674.	3.2	44

#	Article	IF	Citations
289	Compact planar monopole antenna with ground branch for GSM/DCS/PCS/IMT2000 operation. Microwave and Optical Technology Letters, 2006, 48, 719-721.	1.4	6
290	A novel multiband and broadband fractal patch antenna. Microwave and Optical Technology Letters, 2006, 48, 814-817.	1.4	6
291	Correlation Transfer Characteristics of Multiple Element Antennas. , 2006, , .		0
292	A New Modeling Technique for Simulating 3-D Arbitrary Conductor-Magnet Structures for RFIC Applications. IEEE Transactions on Electron Devices, 2005, 52, 1354-1363.	3.0	21
293	A new array pattern synthesis algorithm using the two-step least-squares method. IEEE Signal Processing Letters, 2005, 12, 250-253.	3.6	43
294	A novel switched-sector planar antenna using parasitic elements. , 2004, , .		9
295	Accurate model for micromachined microwave planar spiral inductors. International Journal of RF and Microwave Computer-Aided Engineering, 2003, 13, 229-238.	1.2	6
296	A novel accurate PEEC-based 3D modeling technique for RF devices of arbitrary conductor-magnet structure. Microwave and Optical Technology Letters, 2003, 38, 237-240.	1.4	6
297	A compact planar inverted-f antenna with a pbg-type ground plane for mobile communications. IEEE Transactions on Vehicular Technology, 2003, 52, 483-489.	6.3	33
298	Influence of a metallic enclosure on the S-parameters of microstrip photonic bandgap structures. IEEE Transactions on Electromagnetic Compatibility, 2002, 44, 324-328.	2.2	19
299	Authors' reply-some problems about asymmetrical coplanar strip lines. IEEE Transactions on Microwave Theory and Techniques, 2001, 49, 410-411.	4.6	1
300	CAD models for asymmetrical, elliptical, cylindrical, and elliptical cone coplanar strip lines. IEEE Transactions on Microwave Theory and Techniques, 2000, 48, 312-316.	4.6	17
301	CAD Models for a Boxed Coplanar Waveguide with Multilayered Substrates and Overlays. Journal of Infrared, Millimeter and Terahertz Waves, 2000, 21, 1303-1311.	0.6	0
302	Dynamic Spatial Channel Assignment for Smart Antenna. Wireless Personal Communications, 1999, 11, 79-87.	2.7	6
303	Generalized Capacitance Matrix Method and optimal design of duplexes. , 0, , .		0
304	Multibeam plane array using modified Butler matrix circuits. , 0, , .		4
305	An improved type slot-stacked patch antenna. , 0, , .		0
306	A neural network algorithm for signal processing of LFMCW or IFSCW system. , 0, , .		1

#	Article	IF	CITATIONS
307	A novel low profile slot-multi-layer patch antenna. , 0, , .		O
308	Dual frequency double-branch printed inverted-F antenna., 0,,.		2
309	A new method for joint DOA and FOA estimation using music algorithm. , 0, , .		o
310	Real time measurement of VSWR with directional couplers. , 0, , .		4
311	How many dipoles can be packed into (π/2)/sup 3/., 0,,.		O
312	A Miniature Antenna for DTV/GSM Operation. , 0, , .		0
313	A Novel Multiband Fractal Patch Antenna. , 0, , .		1
314	A Novel Small Fractal Patch Antenna., 0,,.		2
315	A Novel Array Signal Receiving System for Broad-Band Wireless Communications. , 0, , .		O
316	Element Position Optimization of Dual-Frequency Sparse Array for Direction Finding Using MUSIC. , 0, ,		0
317	A New Structure of Smart Antenna with Pencil Beam Pattern. , 0, , .		О
318	Design of Triple-band Planar Inverted-F antenna., 0,,.		1
319	A directivity comparison between hemispherical and planar arrays. , 0, , .		2
320	An Adaptive Hemispherical Array. , 0, , .		0
321	A Six-port Coupler with High Directivity for VSWR Measurement. , 0, , .		4
322	Onâ€demand digital predistortion for broadband transmitters with carrier aggregation. Microwave and Optical Technology Letters, 0, , .	1.4	0