Mengjun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4635159/publications.pdf

Version: 2024-02-01

91 papers 3,494 citations

33 h-index 56 g-index

97 all docs 97 docs citations

97 times ranked 3036 citing authors

#	Article	IF	CITATIONS
1	Enhanced removal of Pb from electrolytic manganese anode slime and preparation of chemical MnO ₂ . Environmental Technology (United Kingdom), 2023, 44, 3741-3750.	2.2	2
2	Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag. Science of the Total Environment, 2022, 810, 152175.	8.0	27
3	Electronic Metal–Support Interaction Modulation of Singleâ€Atom Electrocatalysts for Rechargeable Zinc–Air Batteries. Small Methods, 2022, 6, e2100947.	8.6	29
4	Toxic footprint and materials profile of electronic components in printed circuit boards. Waste Management, 2022, 141, 154-162.	7.4	4
5	Electrolytic manganese residue disposal based on basic burning raw material: Heavy metals solidification/stabilization and long-term stability. Science of the Total Environment, 2022, 825, 153774.	8.0	19
6	Gold Fractal Growth during Its Recycling from Waste Printed Circuit Boards by Slurry Electrolysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 5183-5194.	6.7	5
7	Acid-Free Leaching Nickel, Cobalt, Manganese, and Lithium from Spent Lithium-Ion Batteries Using Fe(II) and Fe(III) Solution. Journal of Sustainable Metallurgy, 2022, 8, 863-871.	2.3	3
8	A semi-scaled experiment for metals separating and recovering from waste printed circuit boards by slurry electrolysis. Chemical Engineering Research and Design, 2021, 147, 37-44.	5. 6	25
9	Cobalt and lithium leaching from waste lithium ion batteries by glycine. Journal of Power Sources, 2021, 482, 228942.	7.8	43
10	Metal mobility and toxicity of reclaimed copper smelting fly ash and smelting slag. RSC Advances, 2021, 11, 6877-6884.	3.6	7
11	Zero E-waste: Regulatory impediments and blockchain imperatives. Frontiers of Environmental Science and Engineering, $2021,15,1.$	6.0	29
12	Copper fractal growth during recycling from waste printed circuit boards by slurry electrolysis. Frontiers of Environmental Science and Engineering, 2021, 15, 1.	6.0	4
13	Enhanced leaching of manganese from low-grade pyrolusite using ball milling and electric field. Ecotoxicology and Environmental Safety, 2021, 211, 111893.	6.0	19
14	Comparative effectiveness of technical and regulatory innovations to reduce the burden of electronic waste. Resources, Conservation and Recycling, 2021, 167, 105387.	10.8	5
15	Seasonal Variation of the Mobility and Toxicity of Metals in Beijing's Municipal Solid Waste Incineration Fly Ash. Sustainability, 2021, 13, 6532.	3.2	2
16	A critical review on approaches for electrolytic manganese residue treatment and disposal technology: Reduction, pretreatment, and reuse. Journal of Hazardous Materials, 2021, 418, 126235.	12.4	60
17	Enhanced recovery of copper from reclaimed copper smelting fly ash via leaching and electrowinning processes. Separation and Purification Technology, 2021, 273, 118943.	7.9	14
18	Recovery of high purity copper from waste printed circuit boards of mobile phones by slurry electrolysis with ammonia-ammonium system. Separation and Purification Technology, 2021, 275, 119180.	7.9	27

#	Article	IF	CITATIONS
19	Hydroxylation of electrolytic manganese anode slime with EDTA-2Na and its adsorption of methylene blue. Separation and Purification Technology, 2021, 278, 119526.	7.9	14
20	Waste Electrical and Electronic Equipment Reutilization in China. Sustainability, 2021, 13, 11433.	3.2	7
21	Metal–Organic Gels from Silver Nanoclusters with Aggregationâ€Induced Emission and Fluorescenceâ€toâ€Phosphorescence Switching. Angewandte Chemie - International Edition, 2020, 59, 9922-9927.	13.8	138
22	Metal–Organic Gels from Silver Nanoclusters with Aggregationâ€Induced Emission and Fluorescenceâ€toâ€Phosphorescence Switching. Angewandte Chemie, 2020, 132, 10008-10013.	2.0	14
23	The inappropriate application of the regression Langmuir Qm for adsorption capacity comparison. Science of the Total Environment, 2020, 699, 134222.	8.0	21
24	A novel and efficient ammonia leaching method for recycling waste lithium ion batteries. Journal of Cleaner Production, 2020, 251, 119665.	9.3	56
25	Sol-gel hydrothermal synthesis of nano crystalline silicotitanate and its strontium and cesium adsorption. Environmental Science and Pollution Research, 2020, 27, 4404-4413.	5.3	8
26	Magnetic and Biocompatible Fullerenol/Fe(III) Microcapsules with Antioxidant Activities. ACS Applied Bio Materials, 2020, 3, 358-368.	4.6	7
27	A new electrochemical method for simultaneous removal of Mn2+and NH4+-N in wastewater with Cu plate as cathode. Ecotoxicology and Environmental Safety, 2020, 206, 111341.	6.0	8
28	Metal mobility and toxicity of zinc hydrometallurgical residues. Chemical Engineering Research and Design, 2020, 144, 366-371.	5.6	18
29	Copper extraction from waste printed circuit boards by glycine. Separation and Purification Technology, 2020, 253, 117463.	7.9	39
30	A low cost of phosphate-based binder for Mn2+ and NH4+-N simultaneous stabilization in electrolytic manganese residue. Ecotoxicology and Environmental Safety, 2020, 205, 111317.	6.0	19
31	MnO ₂ -Functionalized Amorphous Carbon Sorbents from Spent Lithium-lon Batteries for Highly Efficient Removal of Cadmium from Aqueous Solutions. Industrial & Discrete Engineering Chemistry Research, 2020, 59, 10210-10220.	3.7	33
32	Self-Stabilized Giant Aggregates in Water from Room-Temperature Ionic Liquids with an Asymmetric Polar–Apolar–Polar Architecture. Journal of Physical Chemistry B, 2020, 124, 4651-4660.	2.6	0
33	Heavy Metals Removing from Municipal Solid Waste Incineration Fly Ashes by Electric Field-Enhanced Washing. Materials, 2020, 13, 793.	2.9	11
34	An innovative method for manganese (Mn2+) and ammonia nitrogen (NH4+-N) stabilization/solidification in electrolytic manganese residue by basic burning raw material. Chemosphere, 2020, 253, 126896.	8.2	38
35	Manganese and ammonia nitrogen recovery from electrolytic manganese residue by electric field enhanced leaching. Journal of Cleaner Production, 2019, 236, 117708.	9.3	61
36	Effect of electrolyte reuse on metal recovery from waste CPU slots by slurry electrolysis. Waste Management, 2019, 95, 370-376.	7.4	29

#	Article	IF	CITATIONS
37	Effect of ionic liquid [MIm]HSO4 on WPCB metal-enriched scraps refined by slurry electrolysis. Environmental Science and Pollution Research, 2019, 26, 33260-33268.	5.3	15
38	Simultaneous optimizing removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using chemical equilibrium model. Ecotoxicology and Environmental Safety, 2019, 172, 273-280.	6.0	37
39	Guanosine-based thermotropic liquid crystals with tunable phase structures and ion-responsive properties. Journal of Colloid and Interface Science, 2019, 553, 269-279.	9.4	19
40	Fullerene-Directed Synthesis of Flowerlike Cu ₃ (PO ₄) ₂ Crystals for Efficient Photocatalytic Degradation of Dyes. Langmuir, 2019, 35, 8806-8815.	3.5	22
41	An innovative method for synergistic stabilization/solidification of Mn2+, NH4+-N, PO43â ² and Fâ ² in electrolytic manganese residue and phosphogypsum. Journal of Hazardous Materials, 2019, 376, 212-222.	12.4	70
42	Aggregation Behavior and Antioxidant Properties of Amphiphilic Fullerene C ₆₀ Derivatives Cofunctionalized with Cationic and Nonionic Hydrophilic Groups. Langmuir, 2019, 35, 6939-6949.	3. 5	21
43	The leaching behaviour of Cu, Zn and Pb from waste printed circuit boards by [BSO _{4HPy]HSO_{4. International Journal of Environment and Pollution, 2019, 65, 267.}}	0.2	0
44	Copper and gold recovery from CPU sockets by one-step slurry electrolysis. Journal of Cleaner Production, 2019, 213, 673-679.	9.3	60
45	Enhanced electrokinetic remediation of manganese and ammonia nitrogen from electrolytic manganese residue using pulsed electric field in different enhancement agents. Ecotoxicology and Environmental Safety, 2019, 171, 523-529.	6.0	42
46	Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation. Water Research, 2019, 153, 229-238.	11.3	143
47	Effect of hydrothermal carbonization on heavy metals in swine manure: Speciation, bioavailability and environmental risk. Journal of Environmental Management, 2019, 234, 97-103.	7.8	67
48	Cathode ray tubes glass recycling: A review. Science of the Total Environment, 2019, 650, 2842-2849.	8.0	34
49	Recovery of copper from WPCBs using slurry electrolysis with ionic liquid [BSO3HPy]â^™HSO4. Hydrometallurgy, 2018, 175, 150-154.	4.3	52
50	Simultaneous stabilization/solidification of Mn2+ and NH4+-N from electrolytic manganese residue using MgO and different phosphate resource. Ecotoxicology and Environmental Safety, 2018, 148, 220-227.	6.0	58
51	Application of critical water-alcohol composite medium to treat waste printed circuit boards: Oil phase products characteristic and debromination. Journal of Hazardous Materials, 2018, 344, 333-342.	12.4	41
52	Hierarchically Organized Honeycomb Films Based on the Self-Assembly of Fulleromonodendrons. Journal of Physical Chemistry C, 2018, 122, 24851-24862.	3.1	4
53	Preparation and Self-Assembly of a 2:1 Polyoxometalate-Fullerene C60 Shape Amphiphile. European Journal of Inorganic Chemistry, 2018, 2018, 4255-4264.	2.0	6
54	Adsorption of Cadmium on Degraded Soils Amended with Maize-Stalk-Derived Biochar. International Journal of Environmental Research and Public Health, 2018, 15, 2331.	2.6	10

#	Article	IF	CITATIONS
55	Aggregationâ€Induced Emission of Eu ^{Ill} Complexes Balanced with Bulky and Amphiphilic Imidazolium Cations in Ethanol/Water Binary Mixtures. Chemistry - A European Journal, 2018, 24, 15912-15920.	3.3	21
56	Metal-Organic Gels of Catechol-Based Ligands with Ni(II) Acetate for Dye Adsorption. Langmuir, 2018, 34, 9435-9441.	3.5	22
57	Impact of technological innovation and regulation development on e-waste toxicity: a case study of waste mobile phones. Scientific Reports, 2018, 8, 7100.	3.3	33
58	China E-waste management: Struggling for future success. Resources, Conservation and Recycling, 2018, 139, 48-49.	10.8	25
59	Fullerenols Revisited: Highly Monodispersed Photoluminescent Nanomaterials as Ideal Building Blocks for Supramolecular Chemistry. Chemistry - A European Journal, 2018, 24, 16609-16619.	3.3	17
60	Completely separating metals and nonmetals from waste printed circuit boards by slurry electrolysis. Separation and Purification Technology, 2018, 205, 302-307.	7.9	29
61	Photoluminescent Honeycomb Structures from Polyoxometalates and an Imidazoliumâ€Based Ionic Liquid Bearing a Ï€â€Conjugated Moiety and a Branched Aliphatic Chain. Chemistry - A European Journal, 2017, 23, 7278-7286.	3.3	10
62	Superfine copper powders recycled from concentrated metal scraps of waste printed circuit boards by slurry electrolysis. Journal of Cleaner Production, 2017, 152, 1-6.	9.3	56
63	Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis. Frontiers of Environmental Science and Engineering, 2017, 11, 1.	6.0	9
64	Zero-charged catanionic lamellar liquid crystals doped with fullerene C ₆₀ for potential applications in tribology. Soft Matter, 2017, 13, 6250-6258.	2.7	13
65	A novel recovery method of copper from waste printed circuit boards by supercritical methanol process: Preparation of ultrafine copper materials. Waste Management, 2017, 60, 643-651.	7.4	53
66	Adsorption Kinetics of ¹³⁷ Cs ⁺ / ⁹⁰ Sr ²⁺ on Caâ€Bentonite. Water Environment Research, 2017, 89, 791-797.	2.7	5
67	Naphthaleneâ€Functionalized, Photoluminescent Room Temperature Ionic Liquids Bearing Small Counterions. Chemistry - A European Journal, 2016, 22, 6286-6293.	3.3	16
68	Properties and ionic self-assembled structures from mixture of a bola-type strong alkali dication and a branched phosphoric acid. Journal of Colloid and Interface Science, 2016, 472, 157-166.	9.4	9
69	Robust onionlike structures with magnetic and photodynamic properties formed by a fullerene C ₆₀ –POM hybrid. Chemical Communications, 2016, 52, 12171-12174.	4.1	20
70	Evolution of electronic waste toxicity: Trends in innovation and regulation. Environment International, 2016, 89-90, 147-154.	10.0	59
71	Self-Organization and Vesicle Formation of Amphiphilic Fulleromonodendrons Bearing Oligo(poly(ethylene oxide)) Chains. Langmuir, 2016, 32, 2338-2347.	3.5	17
72	Phenolic endocrine disrupting chemicals in an urban receiving river (Panlong river) of Yunnan–Guizhou plateau: Occurrence, bioaccumulation and sources. Ecotoxicology and Environmental Safety, 2016, 128, 133-142.	6.0	45

#	Article	IF	Citations
73	Lead during the leaching process of copper from waste printed circuit boards by five typical ionic liquid acids. Journal of Cleaner Production, 2015, 95, 142-147.	9.3	59
74	"Control-Alt-Delete― Rebooting Solutions for the E-Waste Problem. Environmental Science & Technology, 2015, 49, 7095-7108.	10.0	198
75	Leaching assessments of toxic metals in waste plasma display panel glass. Journal of the Air and Waste Management Association, 2015, 65, 743-750.	1.9	1
76	Preliminary study on removing Cs+/Sr2+ by activated porous calcium silicate—A by-product from high-alumina fly ash recycling industry. Journal of the Air and Waste Management Association, 2015, 65, 99-105.	1.9	2
77	Micro-copper powders recovered from waste printed circuit boards by electrolysis. Hydrometallurgy, 2015, 156, 152-157.	4.3	52
78	Polychlorinated biphenyls and organochlorine pesticides in atmospheric particulate matter of Northern China: distribution, sources, and risk assessment. Environmental Science and Pollution Research, 2015, 22, 17171-17181.	5. 3	17
79	Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids. Waste Management, 2015, 41, 142-147.	7.4	101
80	Self-Assembly and Rheological Properties of a Pseudogemini Surfactant Formed in a Salt-Free Catanionic Surfactant Mixture in Water. Langmuir, 2015, 31, 11209-11219.	3.5	36
81	Behaviour of zinc during the process of leaching copper from WPCBs by typical acidic ionic liquids. RSC Advances, 2015, 5, 34921-34926.	3.6	17
82	Electrokinetic removal of Cu and Zn in anaerobic digestate: Interrelation between metal speciation and electrokinetic treatments. Journal of Hazardous Materials, 2015, 286, 118-126.	12.4	23
83	Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. Journal of Biotechnology, 2014, 173, 24-30.	3.8	116
84	Leaching behavior of copper from waste printed circuit boards with BrÃ,nsted acidic ionic liquid. Waste Management, 2014, 34, 483-488.	7.4	131
85	Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Electronic Waste Disassembly with Industrial Waste Disassembly with Indu	10.0	61
86	Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste. Environmental Science & Environmental Environm	10.0	371
87	Leaching Study of Spent Li-ion Batteries. Procedia Environmental Sciences, 2012, 16, 443-450.	1.4	65
88	Effective utilization of waste cathode ray tube glass—Crystalline silicotitanate synthesis. Journal of Hazardous Materials, 2010, 182, 45-49.	12.4	17
89	Typical pollutants in bottom ashes from a typical medical waste incinerator. Journal of Hazardous Materials, 2010, 173, 181-185.	12.4	66
90	Lead recovery and the feasibility of foam glass production from funnel glass of dismantled cathode ray tube through pyrovacuum process. Journal of Hazardous Materials, 2009, 161, 1109-1113.	12.4	119

MENGJUN CHEN

#	Article	lF	CITATIONS
91	Detoxification of cathode ray tube glass by self-propagating process. Journal of Hazardous Materials, 2009, 165, 980-986.	12.4	30