Suat Ucar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4634833/publications.pdf Version: 2024-02-01

SUAT LICAD

#	Article	IF	CITATIONS
1	Effects of Metal Chlorides on the Hydrothermal Carbonization of Grape Seeds. Energy & Fuels, 2021, 35, 8834-8843.	5.1	10
2	Hydrothermal liquefaction of olive oil residues. Sustainable Chemistry and Pharmacy, 2021, 22, 100476.	3.3	6
3	Hydrothermal carbonization of lignocellulosic biomass and effects of combined Lewis and BrÃ,nsted acid catalysts. Fuel, 2020, 279, 118458.	6.4	45
4	Influence of Co-Pyrolysis of Waste Tetra Pak with Waste Motor Oil on Product Distribution and Properties for Fuel Application. Energy & Fuels, 2019, 33, 11101-11112.	5.1	22
5	Comparative evaluation of dry and wet carbonization of agro industrial wastes for the production of soil improver. Journal of Environmental Chemical Engineering, 2018, 6, 3366-3375.	6.7	20
6	Co-processing of olive bagasse with crude rapeseed oil via pyrolysis. Waste Management and Research, 2017, 35, 480-490.	3.9	2
7	Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis, 2016, 120, 200-206.	5.5	273
8	Conversion of poultry wastes into energy feedstocks. Waste Management, 2016, 56, 530-539.	7.4	47
9	Co-pyrolysis of waste polyolefins with waste motor oil. Journal of Analytical and Applied Pyrolysis, 2016, 119, 233-241.	5.5	48
10	Removal of lead (II) and nickel (II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2CO3 activation. Clean Technologies and Environmental Policy, 2015, 17, 747-756.	4.1	63
11	Co-pyrolysis of pine nut shells with scrap tires. Fuel, 2014, 137, 85-93.	6.4	102
12	Two-step pyrolysis of safflower oil cake. Journal of Analytical and Applied Pyrolysis, 2013, 103, 352-361.	5.5	29
13	Influence of oily wastes on the pyrolysis of scrap tire. Energy Conversion and Management, 2013, 75, 474-481.	9.2	46
14	Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	24
15	Comparison between the "one-step―and "two-step―catalytic pyrolysis of pine bark. Journal of Analytical and Applied Pyrolysis, 2012, 97, 39-48.	5.5	74
16	The slow and fast pyrolysis of cherry seed. Bioresource Technology, 2011, 102, 1869-1878.	9.6	244
17	Production of fungicidal oil and activated carbon from pistachio shell. Journal of Analytical and Applied Pyrolysis, 2011, 91, 140-146.	5.5	56
18	Comparative pyrolysis of polyolefins (PP and LDPE) and PET. Polymer Bulletin, 2010, 64, 817-834.	3.3	104

SUAT UCAR

#	Article	IF	CITATIONS
19	Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil. Journal of Hazardous Materials, 2010, 173, 420-426.	12.4	44
20	Co-pyrolysis of pine cone with synthetic polymers. Fuel, 2010, 89, 1911-1918.	6.4	283
21	Lewis acid catalyzed diesel-like fuel production from raw corn oil. International Journal of Energy Research, 2009, 33, 327-332.	4.5	6
22	The slow pyrolysis of pomegranate seeds: The effect of temperature on the product yields and bio-oil properties. Journal of Analytical and Applied Pyrolysis, 2009, 84, 151-156.	5.5	135
23	Preparation and characterization of activated carbon from waste biomass. Journal of Hazardous Materials, 2009, 165, 481-485.	12.4	320
24	Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Applied Surface Science, 2009, 255, 8890-8896.	6.1	200
25	Characterization of products from the pyrolysis of rapeseed oil cake. Bioresource Technology, 2008, 99, 8771-8776.	9.6	134
26	Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technology, 2008, 99, 6214-6222.	9.6	417
27	The influence of the waste ethylene vinyl acetate copolymer on the thermal degradation of the waste polypropylene. Fuel Processing Technology, 2008, 89, 1201-1206.	7.2	12
28	Upgrading Scrap Tire Derived Oils Using Activated Carbon Supported Metal Catalysts. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2007, 29, 425-437.	2.3	14
29	Evaluation of two different scrap tires as hydrocarbon source by pyrolysis. Fuel, 2005, 84, 1884-1892.	6.4	204
30	Copyrolysis of scrap tires with waste lubricant oil. Fuel Processing Technology, 2005, 87, 53-58.	7.2	66
31	Utilization of red mud as catalyst in conversion of waste oil and waste plastics to fuel. Journal of Material Cycles and Waste Management, 2004, 6, 20-26.	3.0	63
32	Liquefaction of municipal waste plastics in VGO over acidic and non-acidic catalystsâ~†. Fuel, 2003, 82, 415-423.	6.4	52
33	Catalytic and thermal degradation of high-density polyethylene in vacuum gas oil over non-acidic and acidic catalysts. Applied Catalysis A: General, 2003, 242, 51-62.	4.3	31
34	Catalytic Coprocessing of Low-Density Polyethylene with VGO Using Metal Supported on Activated Carbon. Energy & Fuels, 2002, 16, 1301-1308.	5.1	35
35	Conversion of polymers to fuels in a refinery stream. Polymer Degradation and Stability, 2002, 75, 161-171.	5.8	46
36	Conversion of plastics/HVGO mixtures to fuels by two-step processing. Fuel Processing Technology, 2001_73_23-35	7.2	29