Vivian Hsiu-Chuan Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4634639/publications.pdf

Version: 2024-02-01

73 papers 2,501 citations

147801 31 h-index 214800 47 g-index

74 all docs

74 docs citations

times ranked

74

3240 citing authors

#	Article	IF	CITATIONS
1	Early developmental nanoplastics exposure disturbs circadian rhythms associated with stress resistance decline and modulated by DAF-16 and PRDX-2 in C. elegans. Journal of Hazardous Materials, 2022, 423, 127091.	12.4	9
2	Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds. Chemosphere, 2022, 286, 131863.	8.2	30
3	Chronic exposure to environmentally relevant levels of di(2-ethylhexyl) phthalate (DEHP) disrupts lipid metabolism associated with SBP-1/SREBP and ER stress in C. elegans. Environmental Pollution, 2022, 307, 119579.	7. 5	3
4	Potential <scp>antiâ€Parkinsonian' </scp> s effect of <i>S</i> â€(+)â€linalool from <i>Cinnamomum osmophloeum</i> ct. linalool leaves are associated with mitochondrial regulation via <i>gasâ€1</i> , <i>nuoâ€1</i> , and <i>mevâ€1</i> in <i>Caenorhabditis elegans</i> . Phytotherapy Research, 2022, 36, 3325-3334.	5.8	2
5	Chronic di(2-ethylhexyl) phthalate exposure leads to dopaminergic neuron degeneration through mitochondrial dysfunction in C. elegans. Environmental Pollution, 2022, 307, 119574.	7.5	6
6	Early-life and chronic exposure to di(2-ethylhexyl) phthalate enhances amyloid-β toxicity associated with an autophagy-related gene in Caenorhabditis elegans Alzheimer's disease models. Chemosphere, 2021, 273, 128594.	8.2	18
7	Long-term nanoplastics exposure results in multi and trans-generational reproduction decline associated with germline toxicity and epigenetic regulation in Caenorhabditis elegans. Journal of Hazardous Materials, 2021, 412, 125173.	12.4	76
8	A combined approach to remediate cadmium contaminated sediment using the acidophilic sulfur-oxidizing bacterial SV5 and untreated coffee ground. Chemosphere, 2021, 273, 129662.	8.2	12
9	Early-life chronic di(2-ethylhexyl)phthalate exposure worsens age-related long-term associative memory decline associated with insulin/IGF-1 signaling and CRH-1/CREB in Caenorhabditis elegans. Journal of Hazardous Materials, 2021, 417, 126044.	12.4	9
10	Levels of bioavailable manganese in river sediment may elevate reproductive risk in model organism Caenorhabditis elegans. Aquatic Toxicology, 2021, 239, 105958.	4.0	7
11	$N-\hat{I}^3$ -(L-glutamyl)-L-selenomethionine shows neuroprotective effects against Parkinson's disease associated with SKN-1/Nrf2 and TRXR-1 in Caenorhabditis elegans. Phytomedicine, 2021, 92, 153733.	5.3	7
12	Early-life long-term exposure to ZnO nanoparticles suppresses innate immunity regulated by SKN-1/Nrf and the p38 MAPK signaling pathway in Caenorhabditis elegans. Environmental Pollution, 2020, 256, 113382.	7.5	13
13	The bioavailability and potential ecological risk of copper and zinc in river sediment are affected by seasonal variation and spatial distribution. Aquatic Toxicology, 2020, 227, 105604.	4.0	14
14	Parental CuO nanoparticles exposure results in transgenerational toxicity in Caenorhabditis elegans associated with possible epigenetic regulation. Ecotoxicology and Environmental Safety, 2020, 203, 111001.	6.0	26
15	Co-exposure to foodborne and waterborne ZnO nanoparticles in aquatic sediment environments enhances DNA damage and stress gene expression in freshwater Asian clam Corbicula fluminea. Environmental Science: Nano, 2020, 7, 1252-1265.	4.3	6
16	Long-term sediment exposure to ZnO nanoparticles induces oxidative stress in <i>Caenorhabditis elegans</i> . Environmental Science: Nano, 2019, 6, 2602-2614.	4.3	17
17	Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans. Environmental Pollution, 2019, 251, 871-878.	7.5	27
18	<i>N</i> â€Ïâ€(<scp> </scp> â€Clutamyl)â€ <scp> </scp> â€Selenomethionine Inhibits Fat Storage via the Stearoylâ€CoA Desaturases FATâ€6 and FATâ€7 and the Selenoprotein TRXRâ€1 in <i>Caenorhabditis elegans</i> Molecular Nutrition and Food Research, 2019, 63, e1800784.	>.3.3	9

#	Article	IF	Citations
19	Prolonged exposure of di(2-ethylhexyl) phthalate induces multigenerational toxic effects in Caenorhabditis elegans. Science of the Total Environment, 2018, 634, 260-266.	8.0	43
20	Use of <i>Caenorhabditis elegans</i> To Study the Potential Bioactivity of Natural Compounds. Journal of Agricultural and Food Chemistry, 2018, 66, 1737-1742.	5.2	38
21	Chronic exposure to triadimenol at environmentally relevant concentration adversely affects aging biomarkers in Caenorhabditis elegans associated with insulin/IGF-1 signaling pathway. Science of the Total Environment, 2018, 640-641, 485-492.	8.0	29
22	Nâ€Ĵ³â€(Lâ€Clutamyl)â€Lâ€selenomethionine enhances stress resistance and ameliorates aging indicators via the selenoprotein TRXRâ€I in <i>Caenorhabditis elegans</i> . Molecular Nutrition and Food Research, 2017, 61, 1600954.		9
23	Life cycle toxicity assessment of earthworms exposed to cadmium-contaminated soils. Ecotoxicology, 2017, 26, 360-369.	2.4	4
24	Anti-Parkinsonian effects of \hat{l}^2 -amyrin are regulated via LGG-1 involved autophagy pathway in Caenorhabditis elegans. Phytomedicine, 2017, 36, 118-125.	5. 3	41
25	A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor. Chemosphere, 2017, 186, 446-452.	8.2	13
26	Chronic ZnO-NPs exposure at environmentally relevant concentrations results in metabolic and locomotive toxicities in Caenorhabditis elegans. Environmental Pollution, 2017, 220, 1456-1464.	7. 5	37
27	Antioxidant Activities and Reduced Amyloid- \hat{l}^2 Toxicity of 7-Hydroxycalamenene Isolated from the Essential Oil of Zelkova serrata Heartwood. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	4
28	A steroid like phytochemical Antcin M is an anti-aging reagent that eliminates hyperglycemia-accelerated premature senescence in dermal fibroblasts by direct activation of Nrf2 and SIRT-1. Oncotarget, 2016, 7, 62836-62861.	1.8	37
29	Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers. Journal of Agricultural and Food Chemistry, 2016, 64, 2214-2222.	5.2	38
30	Nanoscale zerovalent iron (nZVI) at environmentally relevant concentrations induced multigenerational reproductive toxicity in Caenorhabditis elegans. Chemosphere, 2016, 150, 615-623.	8.2	46
31	Transgenerational Reproductive Effects of Arsenite Are Associated with H3K4 Dimethylation and SPR-5 Downregulation in <i>Caenorhabditis elegans</i> Environmental Science & En	10.0	46
32	Monascin from <i>Monascus</i> Fermented Products Reduces Oxidative Stress and Amyloid-β Toxicity via DAF-16/FOXO in <i>Caenorhabditis elegans</i> Journal of Agricultural and Food Chemistry, 2016, 64, 7114-7120.	5.2	35
33	Arsenite exposure accelerates aging process regulated by the transcription factor DAF-16/FOXO in Caenorhabditis elegans. Chemosphere, 2016, 150, 632-638.	8.2	31
34	Humic acids enhance the microbially mediated release of sedimentary ferrous iron. Environmental Science and Pollution Research, 2016, 23, 4176-4184.	5.3	10
35	Antioxidative Activities of Both Oleic Acid and Camellia tenuifolia Seed Oil Are Regulated by the Transcription Factor DAF-16/FOXO in Caenorhabditis elegans. PLoS ONE, 2016, 11, e0157195.	2.5	43
36	Development of a set of bacterial biosensors for simultaneously detecting arsenic and mercury in groundwater. Environmental Science and Pollution Research, 2015, 22, 10206-10213.	5.3	23

#	Article	IF	Citations
37	A low cost color-based bacterial biosensor for measuring arsenic in groundwater. Chemosphere, 2015, 141, 44-49.	8.2	32
38	Selenite protects <i><scp>C</scp>aenorhabditis elegans</i> from oxidative stress via <scp>DAF</scp> â€16 and <scp>TRXR</scp> â€1. Molecular Nutrition and Food Research, 2014, 58, 863-874.	3.3	35
39	Antioxidant Activity, Delayed Aging, and Reduced Amyloid-β Toxicity of Methanol Extracts of Tea Seed Pomace fromCamellia tenuifolia. Journal of Agricultural and Food Chemistry, 2014, 62, 10701-10707.	5.2	28
40	Arsenite induces neurotoxic effects on AFD neurons via oxidative stress in Caenorhabditis elegans. Metallomics, 2014, 6, 1824-1831.	2.4	27
41	Curcumin-mediated oxidative stress resistance in <i>Caenorhabditis elegans</i> is modulated by <i>age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1</i> , and <i>mev-1</i> . Free Radical Research, 2014, 48, 371-379.	3.3	42
42	Assessment of selenium toxicity on the life cycle of Caenorhabditis elegans. Ecotoxicology, 2014, 23, 1245-1253.	2.4	20
43	Essential Oil Alloaromadendrene from Mixed-Type <i>Cinnamomum osmophloeum</i> Leaves Prolongs the Lifespan in <i>Caenorhabditis elegans</i> Journal of Agricultural and Food Chemistry, 2014, 62, 6159-6165.	5.2	35
44	Antioxidant Activity and Delayed Aging Effects of Hot Water Extract from <i>Chamaecyparis obtusa</i> var. <i>formosana</i> Leaves. Journal of Agricultural and Food Chemistry, 2014, 62, 4159-4165.	5.2	22
45	Selenite Enhances Immune Response against Pseudomonas aeruginosa PA14 via SKN-1 in Caenorhabditis elegans. PLoS ONE, 2014, 9, e105810.	2.5	19
46	Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. Journal of Contaminant Hydrology, 2013, 155, 1-8.	3.3	41
47	Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling. Journal of Hydrology, 2013, 499, 265-274.	5.4	35
48	Phthalates Induce Neurotoxicity Affecting Locomotor and Thermotactic Behaviors and AFD Neurons through Oxidative Stress in Caenorhabditis elegans. PLoS ONE, 2013, 8, e82657.	2.5	60
49	Protective Efficacy of Selenite against Lead-Induced Neurotoxicity in Caenorhabditis elegans. PLoS ONE, 2013, 8, e62387.	2.5	34
50	In Vivo Antioxidant Activities of Essential Oils and Their Constituents from Leaves of the Taiwanese Cinnamomum osmophloeum. Journal of Agricultural and Food Chemistry, 2012, 60, 3092-3097.	5.2	43
51	Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radical Biology and Medicine, 2012, 52, 109-117.	2.9	52
52	Monascus-Fermented Dioscorea Enhances Oxidative Stress Resistance via DAF-16/FOXO in Caenorhabditis elegans. PLoS ONE, 2012, 7, e39515.	2.5	22
53	The ameliorative and toxic effects of selenite on Caenorhabditis elegans. Food and Chemical Toxicology, 2011, 49, 812-819.	3.6	19
54	Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. Journal of Contaminant Hydrology, 2011, 123, 20-29.	3.3	196

#	Article	IF	CITATIONS
55	Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area. Journal of Hazardous Materials, 2011, 197, 397-403.	12.4	32
56	Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mechanisms of Ageing and Development, 2011, 132, 480-487.	4.6	217
57	Lung cancer risk in relation to traffic-related nano/ultrafine particle-bound PAHs exposure: A preliminary probabilistic assessment. Journal of Hazardous Materials, 2011, 190, 150-158.	12.4	82
58	Assessing the characteristics of groundwater quality of arsenic contaminated aquifers in the blackfoot disease endemic area. Journal of Hazardous Materials, 2011, 185, 1458-1466.	12.4	27
59	Modeling human health risks of airborne endotoxin in homes during the winter and summer seasons. Science of the Total Environment, 2010, 408, 1530-1537.	8.0	11
60	A probabilistic approach to quantitatively assess the inhalation risk for airborne endotoxin in cotton textile workers. Journal of Hazardous Materials, 2010, 177, 103-108.	12.4	10
61	<i>Caenorhabditis elegans</i> Bicarbonate Transporter ABTS-1 Is Involved in Arsenite Toxicity and Cholinergic Signaling. Chemical Research in Toxicology, 2010, 23, 926-932.	3.3	9
62	Primary sink and source of geogenic arsenic in sedimentary aquifers in the southern Choushui River alluvial fan, Taiwan. Applied Geochemistry, 2010, 25, 684-695.	3.0	16
63	Valve movement response of the freshwater clam Corbicula fluminea following exposure to waterborne arsenic. Ecotoxicology, 2009, 18, 567-576.	2.4	38
64	Acute toxicity and bioaccumulation of arsenic in freshwater clam <i>Corbicula fluminea</i> Environmental Toxicology, 2008, 23, 702-711.	4.0	28
65	Construction and comparison of fluorescence and bioluminescence bacterial biosensors for the detection of bioavailable toluene and related compounds. Environmental Pollution, 2008, 152, 123-129.	7.5	60
66	Caenorhabditis elegans expresses a functional ArsA. FEBS Journal, 2007, 274, 2566-2572.	4.7	27
67	A biologically based damage assessment model to enhance aquacultural water quality management. Aquaculture, 2006, 251, 280-294.	3.5	12
68	Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environmental Pollution, 2006, 142, 17-23.	7.5	87
69	DEVELOPMENT AND TESTING OF A GREEN FLUORESCENT PROTEIN–BASED BACTERIAL BIOSENSOR FOR MEASURING BIOAVAILABLE ARSENIC IN CONTAMINATED GROUNDWATER SAMPLES. Environmental Toxicology and Chemistry, 2005, 24, 1624.	4.3	53
70	Caenorhabditis elegans gcs-1 Confers Resistance to Arsenic-Induced Oxidative Stress. BioMetals, 2005, 18, 519-528.	4.1	48
71	Molecular Characterization of a Novel, Cadmium-inducible Gene from the Nematode Caenorhabditis elegans. Journal of Biological Chemistry, 2002, 277, 42049-42059.	3.4	60
72	Characterization of a Cadmium-Inducible Isoform of Pyruvate Carboxylase fromCaenorhabditis elegans. DNA Sequence, 2001, 12, 137-145.	0.7	7

#	Article	IF	CITATIONS
73	Cadmium-regulated Genes from the NematodeCaenorhabditis elegans. Journal of Biological Chemistry, 1998, 273, 31962-31970.	3.4	94