Lixiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4634253/publications.pdf

Version: 2024-02-01

20817 38395 13,123 310 60 95 citations g-index h-index papers

314 314 314 8490 docs citations times ranked citing authors all docs

#	Article	lF	Citations
1	Highâ€Efficiency Single Emissive Layer White Organic Lightâ€Emitting Diodes Based on Solutionâ€Processed Dendritic Host and New Orangeâ€Emitting Iridium Complex. Advanced Materials, 2012, 24, 1873-1877.	21.0	345
2	Blue Thermally Activated Delayed Fluorescence Polymers with Nonconjugated Backbone and Through-Space Charge Transfer Effect. Journal of the American Chemical Society, 2017, 139, 17739-17742.	13.7	311
3	Polymer Acceptor Based on Double Bâ†N Bridged Bipyridine (BNBP) Unit for Highâ€Efficiency Allâ€Polymer Solar Cells. Advanced Materials, 2016, 28, 6504-6508.	21.0	298
4	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 1436-1440.	13.8	235
5	Polymer Acceptor Based on Bâ†N Units with Enhanced Electron Mobility for Efficient Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 5313-5317.	13.8	218
6	Developing Conjugated Polymers with High Electron Affinity by Replacing a CC Unit with a B <i>â†∢/i>N Unit. Angewandte Chemie - International Edition, 2015, 54, 3648-3652.</i>	13.8	212
7	Metallophosphors of platinum with distinct main-group elements: a versatile approach towards color tuning and white-light emission with superior efficiency/color quality/brightness trade-offs. Journal of Materials Chemistry, 2010, 20, 7472.	6.7	210
8	Developing Throughâ€Space Charge Transfer Polymers as a General Approach to Realize Fullâ€Color and White Emission with Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2019, 58, 8405-8409.	13.8	196
9	Selfâ€Host Blueâ€Emitting Iridium Dendrimer with Carbazole Dendrons: Nondoped Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2014, 53, 1048-1052.	13.8	187
10	Polymer Acceptors Containing Bâ†N Units for Organic Photovoltaics. Accounts of Chemical Research, 2020, 53, 1557-1567.	15.6	176
11	Oxadiazole-Functionalized Europium(III) \hat{l}^2 -Diketonate Complex for Efficient Red Electroluminescence. Chemistry of Materials, 2003, 15, 1935-1937.	6.7	162
12	Novel hole-transporting materials based on 1,4-bis(carbazolyl)benzene for organic light-emitting devices. Journal of Materials Chemistry, 2004, 14, 895.	6.7	156
13	Replacing Alkyl with Oligo(ethylene glycol) as Side Chains of Conjugated Polymers for Close π–π Stacking. Macromolecules, 2015, 48, 4357-4363.	4.8	155
14	A Divergent Synthesis of Very Large Polyphenylene Dendrimers with Iridium(III) Cores: Molecular Size Effect on the Performance of Phosphorescent Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2009, 131, 14329-14336.	13.7	144
15	Solutionâ€Processible Red Iridium Dendrimers based on Oligocarbazole Host Dendrons: Synthesis, Properties, and their Applications in Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 2754-2762.	14.9	142
16	Solutionâ€Processable Carbazoleâ€Based Conjugated Dendritic Hosts for Powerâ€Efficient Blueâ€Electrophosphorescent Devices. Advanced Materials, 2009, 21, 4983-4986.	21.0	141
17	White electroluminescence from polyfluorene chemically doped with 1,8-napthalimide moieties. Applied Physics Letters, 2004, 85, 2172-2174.	3.3	140
18	White Electroluminescence from All-Phosphorescent Single Polymers on a Fluorinated Poly(arylene) Tj ETQq0 0 (the American Chemical Society, 2012, 134, 20290-20293.	0 rgBT /Ov 13.7	erlock 10 Tf 5 140

the American Chemical Society, 2012, 134, 20290-20293.

#	Article	IF	Citations
19	Design of star-shaped molecular architectures based on carbazole and phosphine oxide moieties: towards amorphous bipolar hosts with high triplet energy for efficient blue electrophosphorescent devices. Journal of Materials Chemistry, 2010, 20, 8126.	6.7	131
20	Bifunctional Green Iridium Dendrimers with a "Selfâ€Host―Feature for Highly Efficient Nondoped Electrophosphorescent Devices. Angewandte Chemie - International Edition, 2009, 48, 6664-6666.	13.8	130
21	Through-space charge transfer hexaarylbenzene dendrimers with thermally activated delayed fluorescence and aggregation-induced emission for efficient solution-processed OLEDs. Chemical Science, 2019, 10, 2915-2923.	7.4	126
22	Solution-Processed Phosphorescent Organic Light-Emitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency. Scientific Reports, 2015, 5, 12487.	3.3	122
23	Conjugated polymers containing Bâ†N unit as electron acceptors for all-polymer solar cells. Science China Chemistry, 2017, 60, 450-459.	8.2	122
24	Diketopyrrolopyrroleâ€based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices. Angewandte Chemie - International Edition, 2016, 55, 10376-10380.	13.8	120
25	Advanced functional polymer materials. Materials Chemistry Frontiers, 2020, 4, 1803-1915.	5.9	117
26	White Electroluminescence from a Starâ€ike Polymer with an Orange Emissive Core and Four Blue Emissive Arms. Advanced Materials, 2008, 20, 1357-1362.	21.0	115
27	Throughâ€Space Chargeâ€Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for Highâ€Efficiency Blue Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2020, 59, 20174-20182.	13.8	110
28	p–π Conjugated Polymers Based on Stable Triarylborane with nâ€Type Behavior in Optoelectronic Devices. Angewandte Chemie - International Edition, 2018, 57, 2183-2187.	13.8	109
29	Multifunctional metallophosphors with anti-triplet–triplet annihilation properties for solution-processable electroluminescent devices. Journal of Materials Chemistry, 2008, 18, 1799.	6.7	108
30	A Novel, Bipolar Polymeric Host for Highly Efficient Blue Electrophosphorescence: a Nonâ€Conjugated Poly(aryl ether) Containing Triphenylphosphine Oxide Units in the Electronâ€Transporting Main Chain and Carbazole Units in Holeâ€Transporting Side Chains. Advanced Materials, 2011, 23, 3570-3574.	21.0	108
31	Fluorescent Conjugated Polymer-Stabilized Gold Nanoparticles for Sensitive and Selective Detection of Cysteine. Journal of Physical Chemistry C, 2007, 111, 13414-13417.	3.1	102
32	Throughâ€space charge transfer polymers for solutionâ€processed organic lightâ€emitting diodes. Aggregate, 2020, 1, 45-56.	9.9	100
33	Highly Selective and Sensitive Detection of Cyanide by a Reaction-Based Conjugated Polymer Chemosensor. Macromolecules, 2011, 44, 4241-4248.	4.8	99
34	A polymer acceptor with an optimal LUMO energy level for all-polymer solar cells. Chemical Science, 2016, 7, 6197-6202.	7.4	98
35	Novel Polyphenylenes Containing Phenol-Substituted Oxadiazole Moieties as Fluorescent Chemosensors for Fluoride Ion. Macromolecules, 2005, 38, 2148-2153.	4.8	95
36	Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nature Communications, 2019, 10, 3271.	12.8	94

3

#	Article	IF	Citations
37	Platinum(II)–Bis(aryleneethynylene) Complexes for Solutionâ€Processible Molecular Bulk Heterojunction Solar Cells. Chemistry - A European Journal, 2012, 18, 1502-1511.	3.3	93
38	Organoboron molecules and polymers for organic solar cell applications. Chemical Society Reviews, 2022, 51, 153-187.	38.1	92
39	Highly Efficient Blue Electrophosphorescent Polymers with Fluorinated Poly(arylene ether phosphine) Tj ETQq1 1	0.784314 13.7	rgBT /Over
40	Highâ€Performance Allâ€Polymer Whiteâ€Lightâ€Emitting Diodes Using Polyfluorene Containing Phosphonate Groups as an Efficient Electronâ€Injection Layer. Advanced Functional Materials, 2010, 20, 2951-2957.	14.9	87
41	nâ€Type Azaacenes Containing Bâ†N Units. Angewandte Chemie - International Edition, 2018, 57, 2000-2004.	13.8	82
42	A versatile color tuning strategy for iridium(III) and platinum(II) electrophosphors by shifting the charge-transfer states with an electron-deficient core. Journal of Materials Chemistry, 2009, 19, 1872.	6.7	80
43	A Distannylated Monomer of a Strong Electronâ€Accepting Organoboron Building Block: Enabling Acceptor–Acceptorâ€Type Conjugated Polymers for nâ€Type Thermoelectric Applications. Angewandte Chemie - International Edition, 2021, 60, 16184-16190.	13.8	78
44	High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer. Applied Physics Letters, 2011, 98, 243309.	3.3	77
45	Oligo(ethylene glycol) as side chains of conjugated polymers for optoelectronic applications. Polymer Chemistry, 2020, 11, 1261-1270.	3.9	76
46	Novel boron- and sulfur-doped polycyclic aromatic hydrocarbon as multiple resonance emitter for ultrapure blue thermally activated delayed fluorescence polymers. Science China Chemistry, 2021, 64, 547-551.	8.2	76
47	Solution-dispersed porous hyperbranched conjugated polymer nanoparticles for fluorescent sensing of TNT with enhanced sensitivity. Polymer Chemistry, 2014, 5, 4521.	3.9	74
48	Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off. Applied Physics Letters, 2009, 94, .	3.3	72
49	Constructing the nanointerpenetrating structure of PCDTBT:PC70BM bulk heterojunction solar cells induced by aggregation of PC70BM via mixed-solvent vapor annealing. Journal of Materials Chemistry A, 2013, 1, 6216.	10.3	72
50	Oxadiazole-containing material with intense blue phosphorescence emission for organic light-emitting diodes. Applied Physics Letters, 2002, 81, 4-6.	3.3	71
51	Highly efficient green light emitting polyfluorene incorporated with 4-diphenylamino-1,8-naphthalimide as green dopant. Journal of Materials Chemistry, 2006, 16, 1431.	6.7	69
52	Controlling charge balance and exciton recombination by bipolar host in single-layer organic light-emitting diodes. Journal of Applied Physics, 2010, 108, .	2.5	69
53	Solutionâ€Processible 2,2′â€Dimethylâ€biphenyl Cored Carbazole Dendrimers as Universal Hosts for Efficient Blue, Green, and Red Phosphorescent OLEDs. Advanced Functional Materials, 2014, 24, 3413-3421.	14.9	67
54	Novel thiophene-aryl co-oligomers for organic thin film transistors. Journal of Materials Chemistry, 2005, 15, 3026.	6.7	66

#	Article	IF	CITATIONS
55	Highly efficient iridium(<scp>iii</scp>) phosphors with phenoxy-substituted ligands and their high-performance OLEDs. Journal of Materials Chemistry C, 2013, 1, 808-821.	5 . 5	66
56	Bridging Small Molecules to Conjugated Polymers: Efficient Thermally Activated Delayed Fluorescence with a Methylâ€Substituted Phenylene Linker. Angewandte Chemie - International Edition, 2020, 59, 1320-1326.	13.8	66
57	Highly efficient phosphorescent bis-cyclometalated iridium complexes based on quinoline ligands. Synthetic Metals, 2005, 155, 539-548.	3.9	65
58	Redâ€Emitting Polyfluorenes Grafted with Quinolineâ€Based Iridium Complex: "Simple Polymeric Chain, Unexpected High Efficiency― Advanced Functional Materials, 2010, 20, 138-146.	14.9	65
59	Thiazole-based metallophosphors of iridium with balanced carrier injection/transporting features and their two-colour WOLEDs fabricated by both vacuum deposition and solution processing-vacuum deposition hybrid strategy. Journal of Materials Chemistry, 2012, 22, 7136.	6.7	64
60	Efficient Electrophosphorescence from a Platinum Metallopolyyne Featuring a 2,7 arbazole Chromophore. Macromolecular Chemistry and Physics, 2009, 210, 1786-1798.	2.2	62
61	Sterically‣ocked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2021, 60, 9635-9641.	13.8	61
62	An A–D–A′–D–A type small molecule acceptor with a broad absorption spectrum for organic solar cells. Chemical Communications, 2018, 54, 303-306.	4.1	61
63	Pure and Saturated Red Electroluminescent Polyfluorenes with Dopant/Host System and PLED Efficiency/Color Purity Tradeâ€Offs. Advanced Functional Materials, 2010, 20, 3143-3153.	14.9	60
64	An Electroactive Pure Organic Roomâ€Temperature Phosphorescence Polymer Based on a Donorâ€Oxygenâ€Acceptor Geometry. Angewandte Chemie - International Edition, 2021, 60, 2455-2463.	13.8	60
65	Suppressing thermal quenching via defect passivation for efficient quasi-2D perovskite light-emitting diodes. Light: Science and Applications, 2022, 11, 69.	16.6	60
66	Synthesis, Light-Emitting, and Two-Photon Absorption Properties of Platinum-Containing Poly(arylene-ethynylene)s Linked by 1,3,4-Oxadiazole Units. Macromolecules, 2010, 43, 7936-7949.	4.8	59
67	Synthesis and characterization of white-light-emitting polyfluorenes containing orange phosphorescent moieties in the side chain. Journal of Polymer Science Part A, 2007, 45, 1746-1757.	2.3	57
68	Polymer Acceptor Based on Bâ†N Units with Enhanced Electron Mobility for Efficient Allâ€Polymer Solar Cells. Angewandte Chemie, 2016, 128, 5399-5403.	2.0	57
69	High-Performance Solution-Processed Red Thermally Activated Delayed Fluorescence OLEDs Employing Aggregation-Induced Emission-Active Triazatruxene-Based Emitters. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30652-30658.	8.0	57
70	Triazatruxene-based small molecules with thermally activated delayed fluorescence, aggregation-induced emission and mechanochromic luminescence properties for solution-processable nondoped OLEDs. Journal of Materials Chemistry C, 2018, 6, 12503-12508.	5. 5	56
71	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie, 2016, 128, 1458-1462.	2.0	54
72	Dendron engineering in self-host blue iridium dendrimers towards low-voltage-driving and power-efficient nondoped electrophosphorescent devices. Chemical Communications, 2017, 53, 180-183.	4.1	53

#	Article	IF	Citations
73	Enhancement of inverted polymer solar cells with solution-processed ZnO-TiOX composite as cathode buffer layer. Applied Physics Letters, 2012, 100, 213906.	3.3	52
74	Detection of explosives with porous xerogel film from conjugated carbazole-based dendrimers. Journal of Materials Chemistry C, 2013, 1, 786-792.	5.5	51
75	A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer. Journal of Applied Physics, 2009, 105, 076101.	2.5	50
76	Starburst 4,4′,4′′-tris(carbazol-9-yl)-triphenylamine-based deep-blue fluorescent emitters with tunable oligophenyl length for solution-processed undoped organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 861-869.	5.5	50
77	Polymer solar cells with open-circuit voltage of 1.3 V using polymer electron acceptor with high LUMO level. Nano Energy, 2017, 32, 216-224.	16.0	50
78	Through-space charge transfer blue polymers containing acridan donor and oxygen-bridged triphenylboron acceptor for highly efficient solution-processed organic light-emitting diodes. Science China Chemistry, 2020, 63, 1112-1120.	8.2	50
79	Improving Active Layer Morphology of All-Polymer Solar Cells by Dissolving the Two Polymers Individually. Macromolecules, 2019, 52, 2402-2410.	4.8	49
80	Ï€â€Stacked Donor–Acceptor Dendrimers for Highly Efficient White Electroluminescence. Angewandte Chemie - International Edition, 2021, 60, 16585-16593.	13.8	49
81	Green light-emitting polyfluorenes with improved color purity incorporated with 4,7-diphenyl-2,1,3-benzothiadiazole moieties. Journal of Materials Chemistry, 2007, 17, 2832.	6.7	48
82	Poly(spirobifluorene)s Containing Nonconjugated Diphenylsulfone Moiety: Toward Blue Emission Through a Weak Charge Transfer Effect. Macromolecules, 2014, 47, 2907-2914.	4.8	48
83	Facile synthesis of self-host functional iridium dendrimers up to the fourth generation with N-phenylcarbazole-based polyether dendrons for non-doped phosphorescent organic light-emitting diodes. Polymer Chemistry, 2015, 6, 1180-1191.	3.9	48
84	An organoboron compound with a wide absorption spectrum for solar cell applications. Chemical Communications, 2017, 53, 12213-12216.	4.1	48
85	Self-host heteroleptic green iridium dendrimers: achieving efficient non-doped device performance based on a simple molecular structure. Chemical Communications, 2011, 47, 9519.	4.1	47
86	Low-bandgap polymer electron acceptors based on double B ↕N bridged bipyridine (BNBP) and diketopyrrolopyrrole (DPP) units for all-polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 9961-9967.	5.5	46
87	Self-Host Blue-Emitting Iridium Dendrimer Containing Bipolar Dendrons for Nondoped Electrophosphorescent Devices with Superior High-Brightness Performance. ACS Applied Materials & amp; Interfaces, 2016, 8, 29600-29607.	8.0	46
88	Fine-Tuning LUMO Energy Levels of Conjugated Polymers Containing a Bâ†N Unit. Macromolecules, 2017, 50, 8521-8528.	4.8	46
89	High-Energy-Level Blue Phosphor for Solution-Processed White Organic Light-Emitting Diodes with Efficiency Comparable to Fluorescent Tubes. IScience, 2018, 6, 128-137.	4.1	46
90	Electron-transporting polymers based on a double Bâ†N bridged bipyridine (BNBP) unit. Chemical Communications, 2017, 53, 1649-1652.	4.1	45

#	Article	IF	Citations
91	Solution-processed multilayer green electrophosphorescent devices with self-host iridium dendrimers as the nondoped emitting layer: achieving high efficiency while avoiding redissolution-induced batch-to-batch variation. Chemical Communications, 2017, 53, 5128-5131.	4.1	45
92	Meta Junction Promoting Efficient Thermally Activated Delayed Fluorescence in Donorâ€Acceptor Conjugated Polymers. Angewandte Chemie - International Edition, 2020, 59, 17903-17909.	13.8	45
93	Solution processable red iridium dendrimers containing oligocarbazole dendrons for efficient nondoped and doped phosphorescent OLEDs. Journal of Materials Chemistry C, 2017, 5, 9753-9760.	5.5	43
94	Red-Emitting Thermally Activated Delayed Fluorescence Polymers with Poly(fluorene- <i>co</i> -3,3′-dimethyl diphenyl ether) as the Backbone. Macromolecules, 2018, 51, 9933-9942.	4.8	43
95	Improving Active Layer Morphology of All-Polymer Solar Cells by Solution Temperature. Macromolecules, 2020, 53, 3325-3331.	4.8	43
96	Green Electrophosphorescent Polymers with Poly(3,6â€Carbazole) as the Backbone: A Linear Structure Does Realize High Efficiency. Advanced Materials, 2011, 23, 3726-3729.	21.0	42
97	Phosphonate-Functionalized Donor Polymer as an Underlying Interlayer To Improve Active Layer Morphology in Polymer Solar Cells. Macromolecules, 2014, 47, 6246-6251.	4.8	42
98	Stable and efficient deep-blue terfluorenes functionalized with carbazole dendrons for solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 8895-8903.	5.5	42
99	Highly Efficient Phosphorescent Furo[3,2- <i>c</i>)pyridine Based Iridium Complexes with Tunable Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range over the Whole Visible Range. ACS Applied Materials & Emission Colors over the Whole Visible Range over the Who	8.0	42
100	Amorphous Polymer Acceptor Containing B ↕N Units Matches Various Polymer Donors for All-Polymer Solar Cells. Macromolecules, 2019, 52, 7081-7088.	4.8	42
101	A p-Ï€* conjugated triarylborane as an alcohol-processable n-type semiconductor for organic optoelectronic devices. Journal of Materials Chemistry C, 2019, 7, 7427-7432.	5.5	42
102	B ↕N Unit Enables n-Doping of Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Conjugated Polymers for Thermoelectric Application. ACS Applied Materials & Conjugated Polymers for Thermoelectric Application.	8.0	42
103	Phosphorescent Cuprous Complexes with N,O Ligands – Synthesis, Photoluminescence, and Electroluminescence. European Journal of Inorganic Chemistry, 2010, 2010, 4009-4017.	2.0	41
104	A Crossâ€Linkable Donor Polymer as the Underlying Layer to Tune the Active Layer Morphology of Polymer Solar Cells. Advanced Functional Materials, 2016, 26, 226-232.	14.9	41
105	Efficient Blue, Green, and Red Electroluminescence from Carbazole-Functionalized Poly(spirobifluorene)s. Macromolecules, 2017, 50, 6945-6953.	4.8	41
106	An oligocarbazole-encapsulated heteroleptic red iridium complex for solution-processed nondoped phosphorescent organic light-emitting diodes with over 10% external quantum efficiency. Journal of Materials Chemistry C, 2017, 5, 5749-5756.	5. 5	40
107	Teaching an Old Poly(arylene ether) New Tricks: Efficient Blue Thermally Activated Delayed Fluorescence. IScience, 2019, 15, 147-155.	4.1	40
108	Domain Controlling by Compound Additive toward Highly Efficient Quasiâ€2D Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2021, 31, 2103890.	14.9	40

#	Article	IF	Citations
109	p–π Conjugated Polymers Based on Stable Triarylborane with nâ€Type Behavior in Optoelectronic Devices. Angewandte Chemie, 2018, 130, 2205-2209.	2.0	39
110	Organic heterojunctions as a charge generation layer in tandem organic light-emitting diodes: the effect of interfacial energy level and charge carrier mobility. Journal of Materials Chemistry, 2011, 21, 15332.	6.7	38
111	Polymer Electron Acceptors with Conjugated Side Chains for Improved Photovoltaic Performance. Macromolecules, 2017, 50, 3171-3178.	4.8	38
112	Novel SolubleN-Phenyl-Carbazole-Containing PPVs for Light-Emitting Devices: Synthesis, Electrochemical, Optical, and Electroluminescent Properties. Macromolecular Chemistry and Physics, 2004, 205, 247-255.	2.2	37
113	Organic solar cells based on small molecule donors and polymer acceptors operating at 150 ${\rm \^{A}}^{\circ}{\rm C}$. Journal of Materials Chemistry A, 2020, 8, 10983-10988.	10.3	37
114	Solvent vaporâ€induced self assembly and its influence on optoelectronic conversion of poly(3â€hexylthiophene): Methanofullerene bulk heterojunction photovoltaic cells. Journal of Applied Polymer Science, 2009, 111, 1799-1804.	2.6	36
115	Single molecular tuning of the charge balance in blue-emitting iridium dendrimers for efficient nondoped solution-processed phosphorescent OLEDs. Chemical Communications, 2016, 52, 11508-11511.	4.1	36
116	Fullerene Adducts Bearing Cyano Moiety for Both High Dielectric Constant and Good Active Layer Morphology of Organic Photovoltaics. Advanced Functional Materials, 2016, 26, 6107-6113.	14.9	36
117	Achieving Deep-Blue Thermally Activated Delayed Fluorescence in Nondoped Organic Light-Emitting Diodes through a Spiro-Blocking Strategy. ACS Omega, 2019, 4, 1861-1867.	3.5	36
118	A polymer acceptor containing the B $\hat{a}\dagger N$ unitfor all-polymer solar cells with 14% efficiency. Journal of Materials Chemistry A, 2021, 9, 21071-21077.	10.3	36
119	Developing Throughâ€Space Charge Transfer Polymers as a General Approach to Realize Fullâ€Color and White Emission with Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2019, 131, 8493-8497.	2.0	35
120	A Conjugated Polymer Containing a B ↕N Unit for Unipolar n-Type Organic Field-Effect Transistors. ACS Applied Polymer Materials, 2020, 2, 19-25.	4.4	35
121	Polymer light-emitting diodes based on a bipolar transporting luminescent polymer. Journal of Materials Chemistry, 2003, 13, 773-777.	6.7	33
122	Highly efficient red electroluminescent polymers with dopant/host system and molecular dispersion feature: polyfluorene as the host and 2,1,3-benzothiadiazole derivatives as the red dopant. Journal of Materials Chemistry, 2008, 18, 319-327.	6.7	33
123	Blue electroluminescent polymers with dopant–host systems and molecular dispersion features: polyfluorene as the deep blue host and 1,8-naphthalimide derivative units as the light blue dopants. Journal of Materials Chemistry, 2008, 18, 1659.	6.7	33
124	White electroluminescent singleâ€polymer achieved by incorporating three polyfluorene blue arms into a starâ€shaped orange core. Journal of Polymer Science Part A, 2012, 50, 2854-2862.	2.3	33
125	Small molecules based on 2,7-carbazole for efficient solution-processed organic solar cells. Journal of Materials Chemistry A, 2013, 1, 8805.	10.3	33
126	A chlorinated phenazine-based donor–acceptor copolymer with enhanced photovoltaic performance. Polymer Chemistry, 2014, 5, 1848.	3.9	33

#	Article	IF	Citations
127	Small Molecular Donor/Polymer Acceptor Type Organic Solar Cells: Effect of Molecular Weight on Active Layer Morphology. Macromolecules, 2019, 52, 8682-8689.	4.8	33
128	Enhanced stability of zinc oxide-based hybrid polymer solar cells by manipulating ultraviolet light distribution in the active layer. Applied Physics Letters, 2011, 98, 203304.	3.3	32
129	Interfacial triplet confinement for achieving efficient solution-processed deep-blue and white electrophosphorescent devices with underestimated poly(N-vinylcarbazole) as the host. Journal of Materials Chemistry C, 2013, 1, 4933.	5.5	32
130	Highâ€Performance Red Quantumâ€Dot Lightâ€Emitting Diodes Based on Organic Electron Transporting Layer. Advanced Functional Materials, 2021, 31, 2007686.	14.9	32
131	Synthesis, characterization, photoluminescent and electroluminescent properties of new conjugated 2,2′-(arylenedivinylene)bis-8-substituted quinolines. Journal of Materials Chemistry, 2003, 13, 1392-1399.	6.7	31
132	Development of a donor polymer using a B ât•N unit for suitable LUMO/HOMO energy levels and improved photovoltaic performance. Polymer Chemistry, 2015, 6, 8029-8035.	3.9	31
133	Color tuning of Novel 2,1,3-Naphthothiadiazole and 2,1,3-Benzoselenadiazole based D-A-D′ Type dopants to realize highly efficient saturated red emission in non-polar solvents. Journal of Materials Chemistry, 2011, 21, 10265.	6.7	30
134	Ultrahigh Colorâ€Stable, Solutionâ€Processed, White OLEDs Using a Dendritic Binary Host and Longâ€Wavelength Dopants with Different Charge Trapping Depths. Advanced Optical Materials, 2015, 3, 1349-1354.	7.3	30
135	Highly efficient tandem white organic light-emitting diodes based upon C60/NaT4 organic heterojunction as charge generation layer. Journal of Materials Chemistry, 2012, 22, 8492.	6.7	29
136	Porous films based on a conjugated polymer gelator for fluorescent detection of explosive vapors. Polymer Chemistry, 2013, 4, 5056.	3.9	29
137	Synthesis and characterization of red light-emitting electrophosphorescent polymers with different triplet energy main chain. Polymer, 2011, 52, 2189-2197.	3.8	28
138	Simple Tuning of the Optoelectronic Properties of Ir ^{III} and Pt ^{II} Electrophosphors Based on Linkage Isomer Formation with a Naphthylthiazolyl Moiety. European Journal of Inorganic Chemistry, 2012, 2012, 2278-2288.	2.0	28
139	Realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering. Chemical Science, 2018, 9, 8656-8664.	7.4	28
140	Poly(phenylene sulfideâ^'tetraaniline):  The Soluble Conducting Polyaniline Analogue with Well-Defined Structures. Macromolecules, 2001, 34, 8453-8455.	4.8	27
141	Redâ€Emitting Dendritic Iridium(III) Complexes for Solution Processable Phosphorescent Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2012, 33, 1036-1041.	3.9	27
142	A double Bâ†N bridged bipyridine (BNBP)-based polymer electron acceptor: all-polymer solar cells with a high donor : acceptor blend ratio. Materials Chemistry Frontiers, 2017, 1, 852-858.	5.9	27
143	A homopolymer based on double B ⟵ N bridged bipyridine as electron acceptor for all-polymer solar cells. Chinese Chemical Letters, 2018, 29, 1343-1346.	9.0	27
144	A hydroxyphenyloxadiazole lithium complex as a highly efficient blue emitter and interface material in organic light-emitting diodes. Journal of Materials Chemistry, 2003, 13, 2922.	6.7	26

#	Article	IF	Citations
145	Intramolecular charge-transfer emission from conjugated polymer nanoparticles: the terminal group effect on electronic and optical properties. Polymer Chemistry, 2015, 6, 2305-2311.	3.9	26
146	Phosphonated conjugated polymers for polymer solar cells with a non-halogenated solvent process. Polymer Chemistry, 2015, 6, 805-812.	3.9	26
147	Highly emissive carbazole-functionalized homopoly(spirobifluorene) for deep-blue polymer light-emitting diodes. Polymer Chemistry, 2017, 8, 2182-2188.	3.9	26
148	A polymer electron donor based on isoindigo units bearing branched oligo(ethylene glycol) side chains for polymer solar cells. Polymer Chemistry, 2017, 8, 5496-5503.	3.9	26
149	Triazatruxene-based thermally activated delayed fluorescence small molecules with aggregation-induced emission properties for solution-processable nondoped OLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2019, 7, 9719-9725.	5 . 5	26
150	Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends. Science China Chemistry, 2018, 61, 1025-1033.	8.2	25
151	Effects of the Substituents of Boron Atoms on Conjugated Polymers Containing Bâ†N Units. Chemistry - A European Journal, 2018, 24, 13043-13048.	3.3	25
152	Star-Shaped Fused-Ring Electron Acceptors with a <i>C</i> _{3<i>h</i>} -Symmetric and Electron-Rich Benzotri(cyclopentadithiophene) Core for Efficient Nonfullerene Organic Solar Cells. ACS Applied Materials & Diterfaces, 2019, 11, 28115-28124.	8.0	25
153	A highly efficient purely organic room-temperature phosphorescence film based on a selenium-containing emitter for sensitive oxygen detection. Journal of Materials Chemistry C, 2021, 9, 9907-9913.	5.5	25
154	Synthesis, characterization, and electroluminescence of PPV copolymers containing electron and holeâ€transporting units. Journal of Polymer Science Part A, 2008, 46, 1566-1576.	2.3	24
155	Effect of organic bulk heterojunction as charge generation layer on the performance of tandem organic light-emitting diodes. Journal of Applied Physics, 2011, 110, .	2.5	24
156	Organic solar cells based on a polymer acceptor and a small molecule donor with a high open-circuit voltage. Journal of Materials Chemistry C, 2017, 5, 6812-6819.	5.5	24
157	A novel furo [3,2-c] pyridine-based iridium complex for high-performance organic light-emitting diodes with over 30% external quantum efficiency. Journal of Materials Chemistry C, 2017, 5, 10122-10125.	5.5	24
158	Bipolar Poly(arylene phosphine oxide) Hosts with Widely Tunable Triplet Energy Levels for High-Efficiency Blue, Green, and Red Thermally Activated Delayed Fluorescence Polymer Light-Emitting Diodes. Macromolecules, 2019, 52, 3394-3403.	4.8	24
159	Synthesis and Electroluminescent Properties of Through-Space Charge Transfer Polymers Containing Acridan Donor and Triarylboron Acceptors. Frontiers in Chemistry, 2019, 7, 854.	3.6	24
160	Recent development of n-type thermoelectric materials based on conjugated polymers. Nano Materials Science, 2020, , .	8.8	24
161	High solubility and photoluminescence quantum yield water-soluble polyfluorenes with dendronized amino acid side chains: synthesis, photophysical, and metal ion sensing properties. Journal of Materials Chemistry, 2010, 20, 7957.	6.7	23
162	Enhanced Performance for Polymer Solar Cells by Using Surfactantâ€Modified PEDOT:PSS as the Anode Buffer Layer. Macromolecular Chemistry and Physics, 2011, 212, 1846-1851.	2.2	23

#	Article	IF	CITATIONS
163	Solution-processible hyperbranched conjugated polymer nanoparticles with tunable particle sizes by Suzuki polymerization in miniemulsion. RSC Advances, 2013, 3, 8645.	3.6	23
164	A New Electronâ€Rich Unit for Polymer Electron Acceptors: 4,4â€Difluoroâ€4 <i>H</i> àâ€cyclopenta[2,1â€b:3,4â€b′]dithiophene. Chemistry - A European Journal, 2017, 2 9486-9490.	:3,3.3	23
165	Dendritic host materials with non-conjugated adamantane cores for efficient solution-processed blue thermally activated delayed fluorescence OLEDs. Journal of Materials Chemistry C, 2019, 7, 11845-11850.	5.5	23
166	Synthesis and characterization of alternating copolymers containing triphenylamine as hole-transporting units. Journal of Polymer Science Part A, 2001, 39, 3278-3286.	2.3	22
167	Efficient inverted top-emitting organic light-emitting diodes using ultrathin MoO3/C60 bilayer structure to enhance hole injection. Applied Physics Letters, 2009, 95, 203508.	3.3	22
168	On the origin of efficient electron injection at phosphonate-functionalized polyfluorene/aluminum interface in efficient polymer light-emitting diodes. Applied Physics Letters, 2010, 97, .	3.3	22
169	Water-dispersible hyperbranched conjugated polymer nanoparticles with sulfonate terminal groups for amplified fluorescence sensing of trace TNT in aqueous solution. Materials Chemistry Frontiers, 2017, 1, 1875-1880.	5.9	22
170	Deep-blue emitting poly[spiro(dibenzoazasiline-10′,9-silafluorene)] for power-efficient PLEDs. Journal of Materials Chemistry C, 2018, 6, 9599-9606.	5.5	22
171	Donor–acceptor type conjugated copolymers based on alternating BNBP and oligothiophene units: from electron acceptor to electron donor and from amorphous to semicrystalline. Journal of Materials Chemistry A, 2020, 8, 20998-21006.	10.3	22
172	Isomers of Bâ†Nâ€Fused Dibenzoâ€azaacenes: How Bâ†N Affects Optoâ€electronic Properties and Device Behaviors?. Chemistry - A European Journal, 2021, 27, 4364-4372.	3.3	22
173	Dendritic Interfacial Exciplex Hosts for Solutionâ€Processed TADFâ€OLEDs with Power Efficiency Approaching 100ÂlmÂW ^{â°'1} . Advanced Optical Materials, 2021, 9, 2100752.	7.3	22
174	A new building block with intramolecular D-A character for conjugated polymers: ladder structure based on Bâ†N unit. Science China Chemistry, 2019, 62, 1387-1392.	8.2	21
175	Molecular Acceptors Based on a Triarylborane Core Unit for Organic Solar Cells. Chemistry - A European Journal, 2020, 26, 873-880.	3.3	21
176	Soluble, saturated-red-light-emitting poly(p-phenylenevinylene) containing triphenylamine units and cyano groups. Journal of Polymer Science Part A, 2004, 42, 3947-3953.	2.3	20
177	Luminescent supramolecular polymers: Cd2+-directed polymerization and properties. Polymer International, 2007, 56, 648-654.	3.1	20
178	High open-circuit voltage polymer/polymer blend solar cells with a polyfluorene copolymer as the electron acceptor. RSC Advances, 2014, 4, 12579.	3.6	20
179	Star-shaped triazatruxene derivatives for rapid fluorescence fiber-optic detection of nitroaromatic explosive vapors. RSC Advances, 2016, 6, 31915-31918.	3.6	20
180	Star-shaped small molecule acceptors with a subphthalocyanine core for solution-processed non-fullerene solar cells. Dyes and Pigments, 2019, 160, 243-251.	3.7	20

#	Article	IF	Citations
181	Throughâ€Space Chargeâ€Transfer Polynorbornenes with Fixed and Controllable Spatial Alignment of Donor and Acceptor for Highâ€Efficiency Blue Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2020, 132, 20349-20357.	2.0	20
182	Boronâ€, Sulfur―and Nitrogenâ€Doped Polycyclic Aromatic Hydrocarbon Multiple Resonance Emitters for Narrowâ€Band Blue Emission. Chemistry - A European Journal, 2022, 28, .	3.3	20
183	Solution-processed white OLEDs with power efficiency over 90 lm W $<$ sup $>$ â $^1sup> by triplet exciton management with a high triplet energy level interfacial exciplex host and a high reverse intersystem crossing rate blue TADF emitter. Materials Horizons, 2022, 9, 1299-1308.$	12.2	20
184	A Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
185	Novel bipolar light-emitting copolymer containing triazole and triphenylamine moieties. Journal of Polymer Science Part A, 2002, 40, 1122-1126.	2.3	19
186	Improving the Power Efficiency of Solutionâ€Processed Phosphorescent WOLEDs with a Selfâ€Host Blue Iridium Dendrimer. Advanced Optical Materials, 2017, 5, 1700514.	7.3	19
187	Methoxyl modification in furo[3,2- <i>c</i>)]pyridine-based iridium complexes towards highly efficient green- and orange-emitting electrophosphorescent devices. Journal of Materials Chemistry C, 2017, 5, 12221-12227.	5.5	19
188	Aggregationâ€Induced Emission of Highly Planar Enaminone Derivatives: Unexpected Fluorescence Enhancement by Bromine Substitution. Advanced Optical Materials, 2019, 7, 1801719.	7.3	19
189	Spiroâ€Linked Hyperbranched Architecture in Electrophosphorescent Conjugated Polymers for Tailoring Triplet Energy Back Transfer. Advanced Materials, 2012, 24, 2009-2013.	21.0	18
190	Dicyanovinyl-functionalized fluorescent hyperbranched conjugated polymer nanoparticles for sensitive naked-eye cyanide ion detection. Polymer Chemistry, 2014, 5, 5949-5956.	3.9	18
191	Tunable charge transfer effect in poly(spirobifluorene)s with different electron-rich side chains. Polymer Chemistry, 2014, 5, 6444-6451.	3.9	18
192	Synthesis and properties of greenish-blue-emitting iridium dendrimers with N-phenylcarbazole-based polyether dendrons by a post-dendronization route. Dalton Transactions, 2015, 44, 1052-1059.	3.3	18
193	nâ€₹ype Azaacenes Containing Bâ†N Units. Angewandte Chemie, 2018, 130, 2018-2022.	2.0	18
194	Crosslinkable poly(p-phenylenevinylene) derivative. Journal of Polymer Science Part A, 2004, 42, 2124-2129.	2.3	17
195	Synthesis and characterization of polyfluorenes containing bisphenazine units. Journal of Polymer Science Part A, 2010, 48, 1990-1999.	2.3	17
196	Diketopyrrolopyrroleâ€based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices. Angewandte Chemie, 2016, 128, 10532-10536.	2.0	17
197	Morphology of small molecular donor/polymer acceptor blends in organic solar cells: effect of the $\exists \in \in \in \mathbb{N}$ if stacking capability of the small molecular donors. Journal of Materials Chemistry C, 2019, 7, 10521-10529.	5.5	17
198	A disk-type polyarene containing four Bâ†N units. Chemical Communications, 2019, 55, 3638-3641.	4.1	17

#	Article	IF	CITATIONS
199	Single Whiteâ€Emitting Polymers with High Efficiency, Low Rollâ€Off, and Enhanced Device Stability by Using Throughâ€Space Charge Transfer Polymer with Blue Delayed Fluorescence as Host for Yellow Phosphor. Advanced Optical Materials, 2020, 8, 1902100.	7.3	17
200	N–B ↕N Bridged Bithiophene: A Building Block with Reduced Band Gap to Design n-Type Conjugated Polymers. Macromolecules, 2021, 54, 6718-6725.	4.8	17
201	Heterogeneous post-passivation of inorganic cesium lead halide perovskite quantum dots for efficient electroluminescent devices. Journal of Materials Chemistry C, 2021, 9, 3978-3986.	5.5	17
202	Alkoxy-capped carbazole dendrimers as host materials for highly efficient narrowband electroluminescence by solution process. Chemical Engineering Journal, 2022, 447, 137517.	12.7	17
203	Synthesis, Crystal Structure, Spectroscopy and Electroluminescence of Zinc(II) Complexes Containing Bidentate 2-(2-pyridyl)quinoline Derivative Ligands. Transition Metal Chemistry, 2006, 31, 639-644.	1.4	16
204	Subphthalocyanine-cored star-shaped electron acceptors with perylene diimide wings for non-fullerene solar cells. Journal of Materials Chemistry C, 2018, 6, 7141-7148.	5.5	16
205	Multiple Resonance Dendrimers Containing Boron, Oxygen, Nitrogenâ€Doped Polycyclic Aromatic Emitters for Narrowband Blueâ€Emitting Solutionâ€Processed OLEDs. Macromolecular Rapid Communications, 2022, 43, e2200079.	3.9	16
206	Synthesis and characterization of colorâ€stable electroluminescent polymers: Poly(dinaphtho[1,2â€a:1′,2′â€g]â€ <i>s</i> a€indacene)s. Journal of Polymer Science Part A, 2008, 46, 4866	- 48 78.	15
207	Red electroluminescent polyfluorenes containing highly efficient 2,1,3-benzoselenadiazole- and 2,1,3-naphthothiadiazole-based red dopants in the side chain. Journal of Materials Chemistry, 2011, 21, 15773.	6.7	15
208	Polyfluorenes containing pyrazine units: Synthesis, photophysics and electroluminescence. Science China Chemistry, 2011, 54, 656-665.	8.2	15
209	An A′–A–D–A—A′ type small molecule based on 2,7-carbazole for solution-processed organic solar c with high open-circuit voltage. RSC Advances, 2013, 3, 23098.	ells 3.6	15
210	Facile Preparation of Molybdenum Bronzes as an Efficient Hole Extraction Layer in Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13590-13596.	8.0	15
211	Polymer Electron Acceptors Based on Isoâ€Naphthalene Diimide Unit with High LUMO Levels. Macromolecular Chemistry and Physics, 2017, 218, 1600606.	2.2	15
212	Inkjet printed polystyrene sulfuric acid-doped poly(3,4-ethylenedioxythiophene) (PEDOT) uniform thickness films in confined grooves through decreasing the surface tension of PEDOT inks. RSC Advances, 2017, 7, 7725-7733.	3.6	15
213	Fluorescence fiber-optic turn-on detection of trace hydrazine vapor with dicyanovinyl-functionalized triazatruxene-based hyperbranched conjugated polymer nanoparticles. Polymer Chemistry, 2017, 8, 2484-2489.	3.9	15
214	A New Polymer Electron Acceptor Based on Thiopheneâ€ <i>S,S</i> êdioxide Unit for Organic Photovoltaics. Macromolecular Rapid Communications, 2018, 39, 1700505.	3.9	15
215	An A–D—A′–D–A type small molecule acceptor with wide absorption spectrum and near-infrared absorption. Materials Chemistry Frontiers, 2018, 2, 2333-2339.	5.9	15
216	Effect of fluorine substitution in organoboron electron acceptors for photovoltaic application. Organic Chemistry Frontiers, 2019, 6, 1996-2003.	4.5	15

#	Article	IF	CITATIONS
217	Room-temperature phosphorescence from a purely organic tetraphenylmethane derivative with formyl groups in both solution and crystalline states. Journal of Materials Chemistry C, 2020, 8, 14360-14364.	5.5	15
218	Orange-red thermally activated delay fluorescence emitters based on asymmetric difluoroboron chelated enaminone: Impact of donor position on luminescent properties. Dyes and Pigments, 2021, 184, 108810.	3.7	15
219	A Distannylated Monomer of a Strong Electronâ€Accepting Organoboron Building Block: Enabling Acceptor–Acceptorâ€Type Conjugated Polymers for nâ€Type Thermoelectric Applications. Angewandte Chemie, 2021, 133, 16320-16326.	2.0	15
220	Bâ†N-Incorporated Dibenzo-azaacenes as n-Type Thermoelectric Materials. ACS Applied Materials & Interfaces, 2021, 13, 33321-33327.	8.0	15
221	Fluorene―and benzimidazoleâ€based blue lightâ€emitting copolymers: Synthesis, photophysical properties, and PLED applications. Journal of Polymer Science Part A, 2012, 50, 2172-2181.	2.3	14
222	Solution processible distyrylarylene-based fluorescent dendrimers: Tuning of carbazole-dendron generation leads to nondoped deep-blue electroluminescence. Organic Electronics, 2018, 53, 43-49.	2.6	14
223	Bridging Small Molecules to Conjugated Polymers: Efficient Thermally Activated Delayed Fluorescence with a Methylâ€Substituted Phenylene Linker. Angewandte Chemie, 2020, 132, 1336-1342.	2.0	14
224	Alkoxy encapsulation of carbazole-based thermally activated delayed fluorescent dendrimers for highly efficient solution-processed organic light-emitting diodes. Chinese Chemical Letters, 2021, 32, 703-707.	9.0	14
225	Stericallyâ€Locked Donor–Acceptor Conjugated Polymers Showing Efficient Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2021, 133, 9721-9727.	2.0	14
226	Donor–Acceptor Conjugated Polymers with Efficient Thermally Activated Delayed Fluorescence: Random versus Alternative Polymerization. Macromolecules, 2021, 54, 5260-5266.	4.8	14
227	Through-Space Charge Transfer Dendrimers Employing Oxygen-Bridged Triarylboron Acceptors for Efficient Deep-Blue Electroluminescence. Chemical Communications, 2021, 57, 7144-7147.	4.1	14
228	Smectic liquid crystals based on hexaazatriphenylene: potential organic n-type semiconductor. New Journal of Chemistry, 2010, 34, 2735.	2.8	13
229	Phosphonate substituted 4,4′-bis(N-carbazolyl)biphenyl with dominant electron injection/transport ability for tuning the single-layer device performance of self-host phosphorescent dendrimer. Journal of Materials Chemistry, 2012, 22, 23680.	6.7	13
230	Synthesis and characterization of yellow-emitting electrophosphorescent polymers based on a fluorinated poly(arylene ether phosphine oxide) scaffold. Journal of Materials Chemistry, 2012, 22, 24848.	6.7	13
231	Effect of sideâ€chain positions on morphology and photovoltaic properties of phenazineâ€based donor–acceptor copolymers. Journal of Polymer Science Part A, 2013, 51, 2910-2918.	2.3	13
232	Fiber-optic detection of nitroaromatic explosives with solution-processable triazatruxene-based hyperbranched conjugated polymer nanoparticles. Polymer Chemistry, 2016, 7, 4542-4548.	3.9	13
233	Solutionâ€Processable Hyperbranched Conjugated Polymer Nanoparticles Based on <i>C</i> ₃ <i>_h</i> Macromolecular Rapid Communications, 2017, 38, 1700001.	3.9	13
234	Deep-blue emitting poly(2′,3′,6′,7′-tetraoctyl-2,7-spirosilabifluorene) simultaneously with good color purity and high external quantum efficiency. Organic Electronics, 2018, 59, 77-83.	2.6	13

#	Article	IF	Citations
235	Tetranuclear Iridium Complex with a Self-Host Feature for High-Efficiency Nondoped Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32365-32372.	8.0	13
236	Effect of polymer donor aggregation on the active layer morphology of amorphous polymer acceptor-based all-polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 5613-5619.	5.5	13
237	Phase Separation in Poly(9,9â€dioctylfluorene)/Poly(methyl methacrylate) Blends. Macromolecular Chemistry and Physics, 2010, 211, 313-320.	2.2	12
238	Balanced charge transport and enhanced white electroluminescence from a single white emissive polymer via thermal annealing. Applied Physics Letters, 2010, 96, 073303.	3.3	12
239	Pure blue electroluminescent poly(aryl ether)s with dopant–host systems. Journal of Polymer Science Part A, 2011, 49, 3911-3919.	2.3	12
240	An alcohol-soluble and ion-free electron transporting material functionalized with phosphonate groups for solution-processed multilayer PLEDs. Chemical Communications, 2016, 52, 12052-12055.	4.1	12
241	Starâ€Shaped and Fused Electron Acceptors based on C 3 h â€Symmetric Coplanar Trindeno[1, 2â€b: 4, 5â€b′: 7, 8â€b′′]trithiophene Core for Nonâ€Fullerene Sola Journal, 2018, 25, 1055-1063.	r Calls. Che	em is try - A Eu
242	Effect of Alkyl Side Chains of Polymer Donors on Photovoltaic Performance of All-Polymer Solar Cells. ACS Applied Polymer Materials, 2021, 3, 42-48.	4.4	12
243	Bâ†Nâ€Incorporated Dibenzoâ€azaacene with Selective Nearâ€Infrared Absorption and Visible Transparency. Chemistry - A European Journal, 2021, 27, 2065-2071.	3.3	12
244	Hyperfluorescent polymers enabled by through-space charge transfer polystyrene sensitizers for high-efficiency and full-color electroluminescence. Chemical Science, 2021, 12, 13083-13091.	7.4	12
245	Effect of configuration and conformation on the spin multiplicity in xylylene type biradicals. Science in China Series B: Chemistry, 2000, 43, 524-530.	0.8	11
246	Phenylene vinylene-based electroluminescent polymers with electron transport block in the main chain. Journal of Polymer Science Part A, 2006, 44, 3469-3478.	2.3	11
247	Supramolecular assemblies from carbazole dendrimers modulated by core size and molecular configuration. Soft Matter, 2013, 9, 10404.	2.7	11
248	A binary solvent mixture-induced aggregation of a carbazole dendrimer host toward enhancing the performance of solution-processed blue electrophosphorescent devices. Journal of Materials Chemistry C, 2015, 3, 5050-5055.	5.5	11
249	Polymer Electron Acceptors Based on Fluorinated Isoindigo Unit for Polymer Solar Cells . Chinese Journal of Chemistry, 2018, 36, 411-416.	4.9	11
250	All-polymer indoor photovoltaic modules. IScience, 2021, 24, 103104.	4.1	11
251	An <i>n</i> -Type All-Fused-Ring Molecule with Narrow Bandgap. CCS Chemistry, 2023, 5, 486-496.	7.8	11
252	Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability. Applied Physics Letters, 2014, 104, 193303.	3.3	10

#	Article	IF	Citations
253	Double Emitting Layer Based Solution Processed WOLEDs Simultaneously with High Power Efficiency and Good Color Stability. Advanced Materials Technologies, 2019, 4, 1900137.	5.8	10
254	An efficient star-shaped fused-ring electron acceptor with $\langle i \rangle C \langle i \rangle \langle sub \rangle 3h \langle sub \rangle -symmetric core \langle i \rangle via \langle i \rangle thieno [3,2-\langle i \rangle b \langle i \rangle] thiophene extending conjugation strategy. Materials Chemistry Frontiers, 2020, 4, 3328-3337.$	5.9	10
255	Efficient and tunable purely organic room temperature phosphorescence films from selenium-containing emitters achieved by structural isomerism. Journal of Materials Chemistry C, 2022, 10, 5141-5146.	5.5	10
256	De novo design of single white-emitting polymers based on one chromophore with multi-excited states. Chemical Engineering Journal, 2022, 446, 137004.	12.7	10
257	Metaâ€linked and paraâ€linked waterâ€soluble poly(arylene ethynylene)s with amino acid side chains: Effects of different linkage on Hg ²⁺ ion sensing properties in aqueous media. Journal of Polymer Science Part A, 2012, 50, 1521-1529.	2.3	9
258	Greenâ€Lightâ€Emitting Poly(Spirobifluorene)s with an Electronâ€Rich Unit in the Side Chain and an Electronâ€Deficient Unit in the Main Chain. Macromolecular Chemistry and Physics, 2014, 215, 1107-1115.	2.2	9
259	Cyclohexane-cored dendritic host materials with high triplet energy for efficient solution-processed blue thermally activated delayed fluorescence OLEDs. Dyes and Pigments, 2020, 174, 108097.	3.7	9
260	BODIPY bearing alkylthienyl side chains: a new building block to design conjugated polymers with near infrared absorption for organic photovoltaics. Polymer Chemistry, 2020, 11, 5750-5756.	3.9	9
261	Meta Junction Promoting Efficient Thermally Activated Delayed Fluorescence in Donorâ€Acceptor Conjugated Polymers. Angewandte Chemie, 2020, 132, 18059-18065.	2.0	9
262	An Electroactive Pure Organic Roomâ€Temperature Phosphorescence Polymer Based on a Donorâ€Oxygenâ€Acceptor Geometry. Angewandte Chemie, 2021, 133, 2485-2493.	2.0	9
263	Highly efficient solution-processed thermally activated delayed fluorescence emitter based on a fused difluoroboron ketoiminate acceptor: C/N switch to realize the effective modulation of luminescence behavior. Journal of Materials Chemistry C, 2021, 9, 14133-14138.	5.5	9
264	Engineering of Annealing and Surface Passivation toward Efficient and Stable Quasi-2D Perovskite Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 11645-11651.	4.6	9
265	Persistent room temperature phosphorescence films based on star-shaped organic emitters. Journal of Materials Chemistry C, 2022, 10, 1833-1838.	5.5	9
266	Modulation of triplet-mediated emission from selenoxanthen-9-one-based Dae "A ae "D type emitters through tuning the twist angle to realize electroluminescence efficiency over 25%. Journal of Materials Chemistry C, 2022, 10, 7437-7442.	5.5	9
267	Intramolecular-locked triazatruxene-based thermally activated delayed fluorescence emitter for efficient solution-processed deep-blue organic light emitting diodes. Chemical Engineering Journal, 2022, 446, 137372.	12.7	9
268	Novel spiro-fluorenes from tandem radical addition for liquid crystalline monodisperse conjugated oligomers. Journal of Materials Chemistry, 2009, 19, 399-408.	6.7	8
269	Solution-Processible Blue Fluorescent Dendrimers with Carbazole/Diphenylamine Hybrid Dendrons for Power-Efficient Organic Light-Emitting Diodes. ACS Omega, 2019, 4, 15923-15928.	3.5	8
270	Solid-State Fluorescence Enhancement of Bromine-Substituted Trans-Enaminone Derivatives. Organic Materials, 2020, 02, 033-040.	2.0	8

#	Article	IF	Citations
271	A polymer acceptor containing a B ↕N unit with strong fluorescence for organic photovoltaics. Journal of Materials Chemistry C, 2022, 10, 10860-10865.	5.5	8
272	Design, synthesis and characterization of novel nitrogen- and sulfur-containing polymers with well-defined conjugated length. Journal of Materials Chemistry, 2002, 12, 181-187.	6.7	7
273	Water-soluble phosphate-functionalized polyfluorene as fluorescence biosensors toward cytochrome c. Science in China Series B: Chemistry, 2009, 52, 833-839.	0.8	7
274	Effects of molecular structures and solvent properties on the self-assembly of carbazole-based conjugated dendrimers by solvent vapor annealing. RSC Advances, 2013, 3, 8037.	3.6	7
275	Research Progress in Organic Solar Cells Based on Small Molecule Donors and Polymer Acceptors. Acta Chimica Sinica, 2021, 79, 545.	1.4	7
276	Ï€â€ S tacked Donor–Acceptor Dendrimers for Highly Efficient White Electroluminescence. Angewandte Chemie, 2021, 133, 16721-16729.	2.0	7
277	Phosphonate-functionalized polyfluorene and its application in organic optoelectronic devices. Polymer Bulletin, 2012, 68, 829-845.	3.3	6
278	Solution processible imidazole-based iridium dendrimers with oligocarbazole for nondoped phosphorescent OLEDs. Organic Electronics, 2019, 68, 193-199.	2.6	6
279	Indenofluorene- and carbazole-based copolymers for blue PLEDs with simultaneous high efficiency and good color purity. Journal of Materials Chemistry C, 2020, 8, 14819-14825.	5.5	6
280	Supramolecular metallogels with complex of phosphonate substituted carbazole derivative and aluminum(III) ion as gelator. Journal of Colloid and Interface Science, 2014, 425, 102-109.	9.4	5
281	Self-host yellow iridium dendrimers based on carbazole dendrons: synthesis, characterization and application in solution-processed organic light-emitting diodes. Science China Chemistry, 2016, 59, 1593-1599.	8.2	5
282	Solution processible triphenylphosphine-oxide-cored dendritic hosts featuring thermally activated delayed fluorescence for power-efficient blue electrophosphorescent devices. Journal of Materials Chemistry C, 2019, 7, 9850-9855.	5.5	5
283	Water-soluble pH neutral triazatruxene-based small molecules as hole injection materials for solution-processable organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 7900-7905.	5.5	5
284	D-(π-A)3 type low bandgap star-shaped fused-ring electron acceptor with alkoxy-substituted thiophene as π-bridge. Dyes and Pigments, 2021, 190, 109329.	3.7	5
285	An Organoboron Compound with a Thienyl Substituent as an Electron Acceptor for Organic Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 251-256.	4.9	5
286	Efficient Narrowband Red Electroluminescence from a Thermally Activated Delayed Fluorescence Polymer and Quantum Dot Hybrid. Chemical Engineering Journal, 2022, , 135221.	12.7	5
287	Synthesis of novel nitrogen- and sulfur-containing conjugated polymers used as hole-transporting materials for organic light-emitting diodes. Journal of Polymer Science Part A, 2002, 40, 1321-1333.	2.3	4
288	Synthesis and photovoltaic performance of donor–acceptor copolymers based on thieno[3,2-b]quinoxaline. Polymer Chemistry, 2013, 4, 2884.	3.9	4

#	Article	IF	CITATIONS
289	Multinuclear Iridium Complex Encapsulated by Oligocarbazole Dendrons for Enhanced Nondoped Device Efficiency. ACS Omega, 2018, 3, 15308-15314.	3.5	4
290	An arylphosphine oxide and phosphonate combination as a solution processable electron injection layer for power-efficient PLEDs. Journal of Materials Chemistry C, 2019, 7, 2633-2639.	5 . 5	4
291	Small-Molecule Donor/Polymer Acceptor Type Organic Solar Cells: Effect of Terminal Groups of Small-Molecule Donors. Organic Materials, 2019, 01, 088-094.	2.0	4
292	A high molecular weight organometallic conjugated polymer incorporated with Hg(<scp>ii</scp>). Chemical Communications, 2020, 56, 5701-5704.	4.1	4
293	Incorporating Se atoms to organoboron polymer electron acceptors to tune opto-electronic properties. Polymer, 2022, 242, 124547.	3.8	4
294	Efficient Red Phosphorescent Polymers with Trap-Assisted Charge Balance: Molecular Design, Synthesis, and Electroluminescent Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18730-18738.	8.0	3
295	Panchromatic Organoboron Molecules with Tunable Absorption Spectra. Chemistry - an Asian Journal, 2020, 15, 3314-3320.	3.3	3
296	Phosphonate/Phosphine Oxide Dyad Additive for Efficient Perovskite Lightâ€Emitting Diodes. Angewandte Chemie, 2022, 134, .	2.0	3
297	Design, synthesis, and properties of polystyreneâ€based throughâ€space charge transfer polymers: Effect of triplet energy level of electron donor moiety on delayed fluorescence and electroluminescence performance. Journal of Polymer Science, 0, , .	3.8	3
298	Nitrogen-bridged star-shaped fused-ring electron acceptors for organic solar cells. Giant, 2022, 10, 100093.	5.1	3
299	Detailed studies on energy loss mechanism in phosphor-sensitized fluorescent polymer light-emitting devices. Journal of Applied Physics, 2010, 107, 054515.	2.5	2
300	A Bromoâ€Functionalized Conjugated Polymer as a Crossâ€Linkable Anode Interlayer of Polymer Solar Cells. Chemistry - an Asian Journal, 2016, 11, 1218-1222.	3.3	2
301	Trap-Controlled White Electroluminescence From a Single Red-Emitting Thermally Activated Delayed Fluorescence Polymer. Frontiers in Chemistry, 2020, 8, 287.	3.6	2
302	Resonating B, N Covalent Bond and Coordination Bond in Aromatic Compounds and Conjugated Polymers. Angewandte Chemie, 0 , , .	2.0	2
303	Morphological transformation of pyrazine-based acene-type molecules after blending with semiconducting polymers: from fibers to quadrilateral crystals. Soft Matter, 2013, 9, 5634.	2.7	1
304	An n-type narrow-bandgap organoboron polymer with quinoidal character synthesized by direct arylation polymerization. Journal of Materials Chemistry C, 2022, 10, 2718-2723.	5 . 5	1
305	Macromol. Chem. Phys. 21/2009. Macromolecular Chemistry and Physics, 2009, 210, NA-NA.	2,2	0
306	Innenrýcktitelbild: Developing Conjugated Polymers with High Electron Affinity by Replacing a Cï½C Unit with a Bâ†N Unit (Angew. Chem. 12/2015). Angewandte Chemie, 2015, 127, 3897-3897.	2.0	0

#	Article	IF	CITATION
307	Titelbild: Diketopyrrolopyrroleâ€based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices (Angew. Chem. 35/2016). Angewandte Chemie, 2016, 128, 10307-10307.	2.0	O
308	26.2: <i>Invited Paper:</i> Electroluminescent Polymers for Solutionâ€processed PLEDs. Digest of Technical Papers SID International Symposium, 2018, 49, 279-279.	0.3	0
309	13.3: Invited Paper: Throughâ€Space Charge Transfer Polymers for Solutionâ€processed OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 187-187.	0.3	0
310	Synthesis and photovoltaic performance of nitrogen-bridged star-shaped fused-ring electron acceptors. Scientia Sinica Chimica, 2022, , .	0.4	0