
Xing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4633351/publications.pdf Version: 2024-02-01

Химс 7ноц

#	Article	IF	CITATIONS
1	Bio-based polyurethane aqueous dispersions. ChemistrySelect, 2023, 8, 1967-2000.	1.5	2
2	Preparation of lysozyme/carbon nanotube hybrids and their interactions at the nano-bio interface. Progress in Organic Coatings, 2022, 163, 106659.	3.9	3
3	The construction of pyramid structure of micro aluminum oxide. Ceramics International, 2022, 48, 8733-8739.	4.8	1
4	MXenes: An emergent materials for packaging platforms and looking beyond. Nano Select, 2022, 3, 1123-1147.	3.7	9
5	Characterization of the Antimicrobial Edible Film Based on Grasshopper Protein/Soy Protein Isolate/Cinnamaldehyde Blend Crosslinked With Xylose. Frontiers in Nutrition, 2022, 9, 796356.	3.7	12
6	Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties. Journal of Materials Science and Technology, 2021, 60, 27-34.	10.7	50
7	Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring. Chemical Engineering Journal, 2021, 404, 126940.	12.7	64
8	Facile preparation of homogenous waterborne poly(urethane/acrylate) composites and the correlation between microstructure and improved properties. Journal of Applied Polymer Science, 2021, 138, 50111.	2.6	4
9	Patterning of polypyrrole using protein-based template and their potential application in resist. Polymer, 2021, 212, 123151.	3.8	5
10	Preparation and Characterization of Crystalline Hydroxyapatite Induced by Selfâ€Assembled Peptide and the Potential Application in Remineralizing Dentin. Advanced Engineering Materials, 2021, 23, 2001470.	3.5	7
11	Functional nanoâ€fillers in waterborne polyurethane/acrylic composites and the thermal, mechanical, and dielectrical properties. Journal of Applied Polymer Science, 2021, 138, 50822.	2.6	6
12	Facile preparation of functional and hybrid coatings by precipitations of polypyrrole and lysozyme via coâ€assembly process. Journal of Applied Polymer Science, 2021, 138, 50954.	2.6	2
13	Assembly and integration of conductive polypyrrole 2D nanofilm on protein nanolayer and the multiple potential applications. Polymer, 2021, 227, 123873.	3.8	3
14	Self-adhesive protein/polypyrrole hybrid film for flexible electronic sensors in physiological signal monitoring. International Journal of Biological Macromolecules, 2021, 181, 160-168.	7.5	10
15	Lysozyme-based composite membranes and their potential application for active packaging. Food Bioscience, 2021, 43, 101078.	4.4	7
16	The mechanism for adsorption of Cr(VI) ions by PE microplastics in ternary system of natural water environment. Environmental Pollution, 2020, 257, 113440.	7.5	78
17	Protean morphology of waterborne polyurethane dispersion: An overview of nanoparticles from sphere to irregular elongated shape. Progress in Organic Coatings, 2020, 146, 105742.	3.9	14
18	Growth of polypyrrole conductive and integrated hybrids with lysozyme nanolayer and the thermal properties. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105975.	7.6	13

XING ZHOU

#	Article	IF	CITATIONS
19	Design, preparation and measurement of protein/CNTs hybrids: A concise review. Journal of Materials Science and Technology, 2020, 46, 74-87.	10.7	43
20	Preparation and characterization of lysozyme@carbon nanotubes/waterborne polyurethane composite and the potential application in printing inks. Progress in Organic Coatings, 2020, 142, 105600.	3.9	15
21	Facile preparation and characterization of fibrous carbon nanomaterial from waste polyethylene terephthalate. Waste Management, 2020, 107, 172-181.	7.4	28
22	Preparation and Characterization of Waterborne Polyurethane/Cellulose Nanocrystal Composite Membrane from Recycling Waste Paper. Journal of Renewable Materials, 2020, 8, 631-645.	2.2	13
23	Protective behavior of volatile corrosion inhibitor on atmospheric corrosion process of carbon steel under thin electrolyte liquid film of chloride solutions. Materials Express, 2020, 10, 1435-1443.	0.5	3
24	Synthesis and characterization of vegetable oil based polyurethanes with tunable thermomechanical performance. Industrial Crops and Products, 2019, 140, 111711.	5.2	43
25	New approach to recycle office waste paper: Reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. Waste Management, 2019, 95, 59-69.	7.4	36
26	Synthesis of waterborne polyurethane using snow as dispersant: Structures and properties controlled by polyols utilization. Journal of Materials Science and Technology, 2019, 35, 1491-1498.	10.7	17
27	Synthesis and properties of castor oil-based waterborne polyurethane/sodium alginate composites with tunable properties. Carbohydrate Polymers, 2019, 208, 391-397.	10.2	82
28	Structure and thermal properties of various alcoholysis products from waste poly(ethylene) Tj ETQq0 0 0 rgBT /O	verlock 10 7.4) Tf 50 382 T
29	Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from office waste paper by two different methods. Carbohydrate Polymers, 2019, 209, 299-309.	10.2	55
30	Various nanoparticle morphologies and wettability properties of aluminum oxide films controlled by water content during the hydrothermal reaction. Journal of Alloys and Compounds, 2018, 749, 180-188.	5.5	9
31	Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials. Carbohydrate Polymers, 2018, 181, 376-385.	10.2	81
32	Rheological properties and storage stability of asphalt modified with nanoscale polyurethane emulsion. Petroleum Science and Technology, 2018, 36, 85-90.	1.5	32
33	Facile Preparation of Hydrophobic Aluminum Oxide Film via Sol-Gel Method. Frontiers in Chemistry, 2018, 6, 308.	3.6	7
34	Polyurethane elastomer composites reinforced with waste natural cellulosic fibers from office paper in thermal properties. Carbohydrate Polymers, 2018, 197, 385-394.	10.2	45
35	Preparation and characterization of organic pigments and their fluorescence properties depending on bulk structure. Journal of Materials Science and Technology, 2018, 34, 2218-2224.	10.7	6

36The morphology and structure of natural clays from Yangtze River and their interactions with
polyurethane elastomer. Composites Part A: Applied Science and Manufacturing, 2017, 96, 46-56.7.612

Xing Zhou

#	Article	IF	CITATIONS
37	Morphology and thermal properties of polyurethane elastomer based on representative structural chain extenders. Thermochimica Acta, 2017, 653, 116-125.	2.7	61
38	Thermal properties of polyurethane elastomer with different flexible molecular chain based on para-phenylene diisocyanate. Journal of Materials Science and Technology, 2017, 33, 1424-1432.	10.7	41
39	Synthesis and characterization of waterborne polyurethane dispersion from glycolyzed products of waste polyethylene terephthalate used as soft and hard segment. International Journal of Adhesion and Adhesives, 2017, 74, 49-56.	2.9	45
40	Thermal and Crystalline Properties of Waterborne Polyurethane by in situ water reaction process and the potential application as biomaterial. Progress in Organic Coatings, 2017, 104, 1-10.	3.9	66
41	Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water. Scientific Reports, 2016, 6, 34574.	3.3	40
42	Preparation and characterization of Fe3O4-CNTs magnetic nanocomposites for potential application in functional magnetic printing ink. Composites Part B: Engineering, 2016, 89, 295-302.	12.0	35
43	Correlation of Raw Materials and Waterborne Polyurethane Properties by Sequence Similarity Analysis. Journal of Materials Science and Technology, 2016, 32, 687-694.	10.7	20
44	Preparation and characterization of waterborne polyurethane containing PET waste/PPG as soft segment. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
45	Recent Advances in Synthesis of Waterborne Polyurethane and Their Application in Water-based Ink: A Review. Journal of Materials Science and Technology, 2015, 31, 708-722.	10.7	210
46	Preparation and properties of <i>β</i> â€phase graphene oxide/PVDF composite films. Journal of Applied Polymer Science, 2015, 132, .	2.6	47
47	Synthesis of Polyurethane Dispersions in Nanoparticles and Their Properties that Depend on Aging Time. Journal of Dispersion Science and Technology, 2015, 36, 1178-1189.	2.4	9
48	Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Progress in Organic Coatings, 2014, 77, 61-71.	3.9	133
49	Viscoelasticity of Asphalt Modified With Packaging Waste Expended Polystyrene. Journal of Materials Science and Technology, 2014, 30, 939-943.	10.7	24
50	Preparation, Characterization and Hot Storage Stability of Asphalt Modified by Waste Polyethylene Packaging. Journal of Materials Science and Technology, 2013, 29, 434-438.	10.7	44