Xing Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4633351/publications.pdf Version: 2024-02-01

Химс 7нон

#	Article	IF	CITATIONS
1	Recent Advances in Synthesis of Waterborne Polyurethane and Their Application in Water-based Ink: A Review. Journal of Materials Science and Technology, 2015, 31, 708-722.	10.7	210
2	Synthesis and characterization of low crystalline waterborne polyurethane for potential application in water-based ink binder. Progress in Organic Coatings, 2014, 77, 61-71.	3.9	133
3	Synthesis and properties of castor oil-based waterborne polyurethane/sodium alginate composites with tunable properties. Carbohydrate Polymers, 2019, 208, 391-397.	10.2	82
4	Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials. Carbohydrate Polymers, 2018, 181, 376-385.	10.2	81
5	The mechanism for adsorption of Cr(VI) ions by PE microplastics in ternary system of natural water environment. Environmental Pollution, 2020, 257, 113440.	7.5	78
6	Thermal and Crystalline Properties of Waterborne Polyurethane by in situ water reaction process and the potential application as biomaterial. Progress in Organic Coatings, 2017, 104, 1-10.	3.9	66
7	Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring. Chemical Engineering Journal, 2021, 404, 126940.	12.7	64
8	Morphology and thermal properties of polyurethane elastomer based on representative structural chain extenders. Thermochimica Acta, 2017, 653, 116-125.	2.7	61
9	Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from office waste paper by two different methods. Carbohydrate Polymers, 2019, 209, 299-309.	10.2	55
10	Structure and thermal properties of various alcoholysis products from waste poly(ethylene) Tj ETQq0 0 0 rgBT /C)verlock 10 7.4) Tf 50 382 T
11	Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties. Journal of Materials Science and Technology, 2021, 60, 27-34.	10.7	50
12	Preparation and properties of <i>β</i> â€phase graphene oxide/PVDF composite films. Journal of Applied Polymer Science, 2015, 132, .	2.6	47
13	Synthesis and characterization of waterborne polyurethane dispersion from glycolyzed products of waste polyethylene terephthalate used as soft and hard segment. International Journal of Adhesion and Adhesives, 2017, 74, 49-56.	2.9	45
14	Polyurethane elastomer composites reinforced with waste natural cellulosic fibers from office paper in thermal properties. Carbohydrate Polymers, 2018, 197, 385-394.	10.2	45
15	Preparation, Characterization and Hot Storage Stability of Asphalt Modified by Waste Polyethylene Packaging. Journal of Materials Science and Technology, 2013, 29, 434-438.	10.7	44
16	Synthesis and characterization of vegetable oil based polyurethanes with tunable thermomechanical performance. Industrial Crops and Products, 2019, 140, 111711.	5.2	43
17	Design, preparation and measurement of protein/CNTs hybrids: A concise review. Journal of Materials Science and Technology, 2020, 46, 74-87.	10.7	43

18Thermal properties of polyurethane elastomer with different flexible molecular chain based on
para-phenylene diisocyanate. Journal of Materials Science and Technology, 2017, 33, 1424-1432.10.741

XING ZHOU

#	Article	IF	CITATIONS
19	Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water. Scientific Reports, 2016, 6, 34574.	3.3	40
20	New approach to recycle office waste paper: Reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. Waste Management, 2019, 95, 59-69.	7.4	36
21	Preparation and characterization of Fe3O4-CNTs magnetic nanocomposites for potential application in functional magnetic printing ink. Composites Part B: Engineering, 2016, 89, 295-302.	12.0	35
22	Rheological properties and storage stability of asphalt modified with nanoscale polyurethane emulsion. Petroleum Science and Technology, 2018, 36, 85-90.	1.5	32
23	Facile preparation and characterization of fibrous carbon nanomaterial from waste polyethylene terephthalate. Waste Management, 2020, 107, 172-181.	7.4	28
24	Viscoelasticity of Asphalt Modified With Packaging Waste Expended Polystyrene. Journal of Materials Science and Technology, 2014, 30, 939-943.	10.7	24
25	Correlation of Raw Materials and Waterborne Polyurethane Properties by Sequence Similarity Analysis. Journal of Materials Science and Technology, 2016, 32, 687-694.	10.7	20
26	Synthesis of waterborne polyurethane using snow as dispersant: Structures and properties controlled by polyols utilization. Journal of Materials Science and Technology, 2019, 35, 1491-1498.	10.7	17
27	Preparation and characterization of lysozyme@carbon nanotubes/waterborne polyurethane composite and the potential application in printing inks. Progress in Organic Coatings, 2020, 142, 105600.	3.9	15
28	Protean morphology of waterborne polyurethane dispersion: An overview of nanoparticles from sphere to irregular elongated shape. Progress in Organic Coatings, 2020, 146, 105742.	3.9	14
29	Growth of polypyrrole conductive and integrated hybrids with lysozyme nanolayer and the thermal properties. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105975.	7.6	13
30	Preparation and Characterization of Waterborne Polyurethane/Cellulose Nanocrystal Composite Membrane from Recycling Waste Paper. Journal of Renewable Materials, 2020, 8, 631-645.	2.2	13
31	The morphology and structure of natural clays from Yangtze River and their interactions with polyurethane elastomer. Composites Part A: Applied Science and Manufacturing, 2017, 96, 46-56.	7.6	12
32	Characterization of the Antimicrobial Edible Film Based on Grasshopper Protein/Soy Protein Isolate/Cinnamaldehyde Blend Crosslinked With Xylose. Frontiers in Nutrition, 2022, 9, 796356.	3.7	12
33	Self-adhesive protein/polypyrrole hybrid film for flexible electronic sensors in physiological signal monitoring. International Journal of Biological Macromolecules, 2021, 181, 160-168.	7.5	10
34	Preparation and characterization of waterborne polyurethane containing PET waste/PPG as soft segment. Journal of Applied Polymer Science, 2015, 132, .	2.6	9
35	Synthesis of Polyurethane Dispersions in Nanoparticles and Their Properties that Depend on Aging Time. Journal of Dispersion Science and Technology, 2015, 36, 1178-1189.	2.4	9
36	Various nanoparticle morphologies and wettability properties of aluminum oxide films controlled by water content during the hydrothermal reaction. Journal of Alloys and Compounds, 2018, 749, 180-188.	5.5	9

Xing Zhou

#	Article	IF	CITATIONS
37	MXenes: An emergent materials for packaging platforms and looking beyond. Nano Select, 2022, 3, 1123-1147.	3.7	9
38	Facile Preparation of Hydrophobic Aluminum Oxide Film via Sol-Gel Method. Frontiers in Chemistry, 2018, 6, 308.	3.6	7
39	Preparation and Characterization of Crystalline Hydroxyapatite Induced by Selfâ€Assembled Peptide and the Potential Application in Remineralizing Dentin. Advanced Engineering Materials, 2021, 23, 2001470.	3.5	7
40	Lysozyme-based composite membranes and their potential application for active packaging. Food Bioscience, 2021, 43, 101078.	4.4	7
41	Preparation and characterization of organic pigments and their fluorescence properties depending on bulk structure. Journal of Materials Science and Technology, 2018, 34, 2218-2224.	10.7	6
42	Functional nanoâ€fillers in waterborne polyurethane/acrylic composites and the thermal, mechanical, and dielectrical properties. Journal of Applied Polymer Science, 2021, 138, 50822.	2.6	6
43	Patterning of polypyrrole using protein-based template and their potential application in resist. Polymer, 2021, 212, 123151.	3.8	5
44	Facile preparation of homogenous waterborne poly(urethane/acrylate) composites and the correlation between microstructure and improved properties. Journal of Applied Polymer Science, 2021, 138, 50111.	2.6	4
45	Assembly and integration of conductive polypyrrole 2D nanofilm on protein nanolayer and the multiple potential applications. Polymer, 2021, 227, 123873.	3.8	3
46	Preparation of lysozyme/carbon nanotube hybrids and their interactions at the nano-bio interface. Progress in Organic Coatings, 2022, 163, 106659.	3.9	3
47	Protective behavior of volatile corrosion inhibitor on atmospheric corrosion process of carbon steel under thin electrolyte liquid film of chloride solutions. Materials Express, 2020, 10, 1435-1443.	0.5	3
48	Bio-based polyurethane aqueous dispersions. ChemistrySelect, 2023, 8, 1967-2000.	1.5	2
49	Facile preparation of functional and hybrid coatings by precipitations of polypyrrole and lysozyme via coâ€assembly process. Journal of Applied Polymer Science, 2021, 138, 50954.	2.6	2
50	The construction of pyramid structure of micro aluminum oxide. Ceramics International, 2022, 48, 8733-8739.	4.8	1