William G Schrage

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4633249/publications.pdf Version: 2024-02-01

WILLIAM C SCHRACE

#	Article	IF	CITATIONS
1	Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans. Journal of Physiology, 2004, 557, 599-611.	2.9	155
2	Ageing reduces nitric-oxide- and prostaglandin-mediated vasodilatation in exercising humans. Journal of Physiology, 2007, 579, 227-236.	2.9	110
3	Endotheliumâ€dependent vasodilatation and exercise hyperaemia in ageing humans: impact of acute ascorbic acid administration. Journal of Physiology, 2009, 587, 1989-2003.	2.9	104
4	α-Adrenergic control of blood flow during exercise: effect of sex and menstrual phase. Journal of Applied Physiology, 2010, 109, 1360-1368.	2.5	56
5	Insulin resistance is associated with lower arterial blood flow and reduced cortical perfusion in cognitively asymptomatic middle-aged adults. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2249-2261.	4.3	46
6	Systemic hypoxia and vasoconstrictor responsiveness in exercising human muscle. Journal of Applied Physiology, 2006, 101, 1343-1350.	2.5	44
7	Cerebral blood flow regulation in women across menstrual phase: differential contribution of cyclooxygenase to basal, hypoxic, and hypercapnic vascular tone. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R222-R231.	1.8	44
8	Agonist-dependent variablity of contributions of nitric oxide and prostaglandins in human skeletal muscle. Journal of Applied Physiology, 2005, 98, 1251-1257.	2.5	38
9	Roles of nitric oxide synthase and cyclooxygenase in leg vasodilation and oxygen consumption during prolonged low-intensity exercise in untrained humans. Journal of Applied Physiology, 2010, 109, 768-777.	2.5	34
10	Cerebrovascular regulation in men and women: stimulus-specific role of cyclooxygenase. Physiological Reports, 2015, 3, e12451.	1.7	33
11	Exercise vasodilation is greater in women: contributions of nitric oxide synthase and cyclooxygenase. European Journal of Applied Physiology, 2015, 115, 1735-1746.	2.5	33
12	Exercise hyperemia and vasoconstrictor responses in humans with cystic fibrosis. Journal of Applied Physiology, 2005, 99, 1866-1871.	2.5	32
13	Microvascular function in younger adults with obesity and metabolic syndrome: role of oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1230-H1237.	3.2	32
14	Muscle blood flow responses to dynamic exercise in young obese humans. Journal of Applied Physiology, 2010, 108, 349-355.	2.5	31
15	Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise. Journal of Applied Physiology, 2006, 100, 1506-1512.	2.5	28
16	Dietary sodium restriction and β2-adrenergic receptor polymorphism modulate cardiovascular function in humans. Journal of Physiology, 2006, 574, 955-965.	2.9	28
17	Regional hypoxic cerebral vasodilation facilitated by diameter changes primarily in anterior versus posterior circulation. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2025-2034.	4.3	28
18	Quantitative cerebrovascular 4D flow MRI at rest and during hypercapnia challenge. Magnetic Resonance Imaging, 2016, 34, 422-428.	1.8	23

WILLIAM G SCHRAGE

#	Article	IF	CITATIONS
19	Greater Beta-Adrenergic Receptor Mediated Vasodilation in Women Using Oral Contraceptives. Frontiers in Physiology, 2016, 7, 215.	2.8	19
20	β-Adrenergic-mediated vasodilation in young men and women: cyclooxygenase restrains nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H756-H764.	3.2	19
21	Peripheral Blood Flow Regulation in Human Obesity and Metabolic Syndrome. Exercise and Sport Sciences Reviews, 2016, 44, 116-122.	3.0	17
22	Altered neurovascular control of the resting circulation in human metabolic syndrome. Journal of Physiology, 2012, 590, 6109-6119.	2.9	16
23	Neural control of blood flow during exercise in human metabolic syndrome. Experimental Physiology, 2014, 99, 1191-1202.	2.0	16
24	Cyclooxygenase-derived vasoconstriction restrains hypoxia-mediated cerebral vasodilation in young adults with metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H261-H269.	3.2	14
25	Impaired hypoxic cerebral vasodilation in younger adults with metabolic syndrome. Diabetes and Vascular Disease Research, 2013, 10, 135-142.	2.0	13
26	Mechanical and metabolic reflex activation of the sympathetic nervous system in younger adults with metabolic syndrome. Autonomic Neuroscience: Basic and Clinical, 2014, 183, 100-105.	2.8	13
27	Differential contribution of cyclooxygenase to basal cerebral blood flow and hypoxic cerebral vasodilation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R468-R479.	1.8	11
28	Nitric oxide synthase inhibition in healthy adults reduces regional and total cerebral macrovascular blood flow and microvascular perfusion. Journal of Physiology, 2021, 599, 4973-4989.	2.9	11
29	Effect of obesity and metabolic syndrome on hypoxic vasodilation. European Journal of Applied Physiology, 2012, 112, 699-709.	2.5	9
30	Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H840-H847.	3.2	9
31	Preserved Microvascular Endothelial Function in Young, Obese Adults with Functional Loss of Nitric Oxide Signaling. Frontiers in Physiology, 2015, 6, 387.	2.8	9
32	Reactive oxygen species and cyclooxygenase products explain the majority of hypoxic cerebral vasodilation in healthy humans. Acta Physiologica, 2019, 226, e13288.	3.8	9
33	Heterogeneous vascular responses to hypoxic forearm exercise in young and older adults. European Journal of Applied Physiology, 2012, 112, 3087-3095.	2.5	6
34	Phosphodiesterase-5 inhibition preserves exercise-onset vasodilator kinetics when NOS activity is reduced. Journal of Applied Physiology, 2018, 124, 276-282.	2.5	6
35	Increased leg blood flow and improved femoral artery shear patterns in metabolic syndrome after a diet and exercise programme. Clinical Physiology and Functional Imaging, 2014, 34, 282-289.	1.2	5
36	Preserved β-adrenergic-mediated vasodilation in skeletal muscle of young adults with obesity despite shifts in cyclooxygenase and nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H25-H35.	3.2	4

WILLIAM G SCHRAGE

#	Article	IF	CITATIONS
37	Challenges in Exercise Physiology Research and Education. Quest, 2008, 60, 13-18.	1.2	3
38	Effect of <i>Ĵ²</i> ₂ -adrenergic receptor polymorphisms on epinephrine and exercise-stimulated lipolysis in humans. Physiological Reports, 2014, 2, e12017.	1.7	2
39	Hypoxia: just say NO?. Journal of Physiology, 2011, 589, 2111-2112.	2.9	1
40	Effect of aging on resistance to oxidative stress in human endothelial progenitor cells (EPCs). FASEB Journal, 2006, 20, A747.	0.5	0
41	Altered vasodilatory mechanisms during exercise in aging humans. FASEB Journal, 2006, 20, A812.	0.5	0
42	Ascorbic acid does not influence skeletal muscle contractionâ€induced rapid vasodilation in older healthy humans. FASEB Journal, 2008, 22, 957.3.	0.5	0
43	Hypoxic exercise responses in lean and obese humans. FASEB Journal, 2010, 24, 990.7.	0.5	0
44	Exercise Hyperemia and Acute Ascorbic Acid Infusion in Obesity and Metabolic Syndrome. FASEB Journal, 2011, 25, 1108.7.	0.5	0
45	Stimulusâ€specific cerebrovascular dysfunction in humans with metabolic syndrome. FASEB Journal, 2012, 26, 896.2.	0.5	0
46	Paradoxical relationship between alphaâ€adrenergic tone and muscle sympathetic nerve activity in human metabolic syndrome. FASEB Journal, 2012, 26, 1091.33.	0.5	0
47	Respiratory influences on muscle sympathetic nerve activity and limb vascular conductance in the steadyâ€state. FASEB Journal, 2013, 27, 1118.8.	0.5	0
48	Metabolic Syndrome alters the balance of prostaglandins in hypoxiaâ€mediated cerebral vasodilation. FASEB Journal, 2013, 27, 1203.10.	0.5	0
49	Endothelium dependent vasodilation in young, obese adults: contribution of NOS. FASEB Journal, 2013, 27, 1133.1.	0.5	0
50	Reduced contribution of NOS and CO to beta adrenergic vasodilation in obesity. FASEB Journal, 2013, 27, 1133.2.	0.5	0
51	Contributions of nitric oxide and prostaglandins to exercise hyperemia in young obese adults. FASEB Journal, 2013, 27, 1136.5.	0.5	0
52	Hypoxic Cerebral Vasodilation in Healthy and Metabolic Syndrome Adults: Distinct Interactions between Cyclooxygenase and Reactive Oxygen Species Signaling. FASEB Journal, 2015, 29, 994.12.	0.5	0
53	Cerebrovascular Regulation During an Insulinâ€Glucose Challenge: Contribution of Nitric Oxide. FASEB Journal, 2018, 32, 712.16.	0.5	0