
## Christine A Iacobuzio-Donahue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4632355/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | <i>MYC</i> Levels Regulate Metastatic Heterogeneity in Pancreatic Adenocarcinoma. Cancer Discovery, 2022, 12, 542-561.                                                                                                                                                  | 9.4  | 35        |
| 2  | Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 2022, 185, 563-575.e11.                                                                                                                                  | 28.9 | 223       |
| 3  | MITI minimum information guidelines for highly multiplexed tissue images. Nature Methods, 2022, 19, 262-267.                                                                                                                                                            | 19.0 | 37        |
| 4  | Genomic and transcriptomic analysis of a library of small cell lung cancer patient-derived xenografts.<br>Nature Communications, 2022, 13, 2144.                                                                                                                        | 12.8 | 18        |
| 5  | Evidence for reduced BRCA2 functional activity in Homo sapiens after divergence from the chimpanzee-human last common ancestor. Cell Reports, 2022, 39, 110771.                                                                                                         | 6.4  | 5         |
| 6  | Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature, 2022, 606,<br>389-395.                                                                                                                                                             | 27.8 | 80        |
| 7  | Concurrent Germline <i>BRCA1</i> / <i>2</i> and Mismatch Repair Mutations in Young-Onset Pancreatic<br>and Colorectal Cancer: The Importance of Comprehensive Germline and Somatic Characterization to<br>Inform Therapeutic Options. JCO Precision Oncology, 2022, , . | 3.0  | 2         |
| 8  | Targeting DNA Damage Response and Replication Stress in Pancreatic Cancer. Gastroenterology, 2021, 160, 362-377.e13.                                                                                                                                                    | 1.3  | 90        |
| 9  | Inflammatory Leptomeningeal Cytokines Mediate COVID-19 Neurologic Symptoms in Cancer Patients.<br>Cancer Cell, 2021, 39, 276-283.e3.                                                                                                                                    | 16.8 | 54        |
| 10 | Initial Whole-Genome Sequencing of Plasma Cell Neoplasms in First Responders and Recovery Workers<br>Exposed to the World Trade Center Attack of September 11, 2001. Clinical Cancer Research, 2021, 27,<br>2111-2118.                                                  | 7.0  | 5         |
| 11 | Artificial Intelligence and Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 251-279.                                                                                                                                                                          | 1.1  | 71        |
| 12 | Early-Onset Pancreas Cancer: Clinical Descriptors, Genomics, and Outcomes. Journal of the National Cancer Institute, 2021, 113, 1194-1202.                                                                                                                              | 6.3  | 35        |
| 13 | Pancreatic cancer stem cells may define tumor stroma characteristics and recurrence patterns in pancreatic ductal adenocarcinoma. BMC Cancer, 2021, 21, 385.                                                                                                            | 2.6  | 24        |
| 14 | Pancreatic cancer prognosis is predicted by an ATAC-array technology for assessing chromatin accessibility. Nature Communications, 2021, 12, 3044.                                                                                                                      | 12.8 | 19        |
| 15 | Multiomic Analysis of Lung Tumors Defines Pathways Activated in Neuroendocrine Transformation.<br>Cancer Discovery, 2021, 11, 3028-3047.                                                                                                                                | 9.4  | 66        |
| 16 | The pancreatic cancer genome revisited. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 469-481.                                                                                                                                                              | 17.8 | 100       |
| 17 | Pancreas cancer and <i>BRCA</i> : A critical subset of patients with improving therapeutic outcomes.<br>Cancer, 2021, 127, 4393-4402.                                                                                                                                   | 4.1  | 24        |
| 18 | The mutational landscape of human somatic and germline cells. Nature, 2021, 597, 381-386.                                                                                                                                                                               | 27.8 | 180       |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The Genetic Evolution of Treatment-Resistant Cutaneous, Acral, and Uveal Melanomas. Clinical Cancer Research, 2021, 27, 1516-1525.                                                                                                                | 7.0  | 6         |
| 20 | Methylation-based Cell-free DNA Signature for Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 1267-1273.                                                                                                                                | 1.1  | 18        |
| 21 | ID1 Mediates Escape from TGFβ Tumor Suppression in Pancreatic Cancer. Cancer Discovery, 2020, 10, 142-157.                                                                                                                                        | 9.4  | 59        |
| 22 | Fumarate hydratase <i>FH</i> c.1431_1433dupAAA (p.Lys477dup) variant is not associated with cancer including renal cell carcinoma. Human Mutation, 2020, 41, 103-109.                                                                             | 2.5  | 25        |
| 23 | Intratumor heterogeneity reflects clinical disease course. Nature Cancer, 2020, 1, 3-6.                                                                                                                                                           | 13.2 | 44        |
| 24 | A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma. Nature Cancer, 2020, 1, 59-74.                                                                                                   | 13.2 | 124       |
| 25 | Cancer cells deploy lipocalin-2 to collect limiting iron in leptomeningeal metastasis. Science, 2020,<br>369, 276-282.                                                                                                                            | 12.6 | 146       |
| 26 | Accelerated single cell seeding in relapsed multiple myeloma. Nature Communications, 2020, 11, 3617.                                                                                                                                              | 12.8 | 41        |
| 27 | Unbiased in vivo preclinical evaluation of anticancer drugs identifies effective therapy for the treatment of pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30670-30678. | 7.1  | 11        |
| 28 | Pancreatic cancers suppress negative feedback of glucose transport to reprogram chromatin for metastasis. Nature Communications, 2020, 11, 4055.                                                                                                  | 12.8 | 19        |
| 29 | HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Reports, 2020, 31, 107625.                                                                                                                            | 6.4  | 78        |
| 30 | Simple mucinous cysts of the pancreas have heterogeneous somatic mutations. Human Pathology, 2020, 101, 1-9.                                                                                                                                      | 2.0  | 14        |
| 31 | Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific<br>Alterations of Immune Cells. Cell, 2020, 181, 1643-1660.e17.                                                                                        | 28.9 | 554       |
| 32 | Alterations in driver genes are predictive of survival in patients with resected pancreatic ductal adenocarcinoma. Cancer, 2020, 126, 3939-3949.                                                                                                  | 4.1  | 44        |
| 33 | The Evolutionary Origins of Recurrent Pancreatic Cancer. Cancer Discovery, 2020, 10, 792-805.                                                                                                                                                     | 9.4  | 71        |
| 34 | Genetic and clinical correlates of entosis in pancreatic ductal adenocarcinoma. Modern Pathology,<br>2020, 33, 1822-1831.                                                                                                                         | 5.5  | 40        |
| 35 | The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell<br>Resolution. Cell, 2020, 181, 236-249.                                                                                                           | 28.9 | 334       |
| 36 | The mutational landscape of normal human endometrial epithelium. Nature, 2020, 580, 640-646.                                                                                                                                                      | 27.8 | 338       |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | iNOS Regulates the Therapeutic Response of Pancreatic Cancer Cells to Radiotherapy. Cancer<br>Research, 2020, 80, 1681-1692.                                                                                                                    | 0.9  | 31        |
| 38 | Genomic Methods Identify Homologous Recombination Deficiency in Pancreas Adenocarcinoma and<br>Optimize Treatment Selection. Clinical Cancer Research, 2020, 26, 3239-3247.                                                                     | 7.0  | 135       |
| 39 | Germ cell tumors and associated hematologic malignancies evolve from a common shared precursor.<br>Journal of Clinical Investigation, 2020, 130, 6668-6676.                                                                                     | 8.2  | 28        |
| 40 | Young-onset pancreas cancer (PC) in patients less than or equal to 50 years old at Memorial Sloan<br>Kettering (MSK): Descriptors, genomics, and outcomes Journal of Clinical Oncology, 2020, 38, 774-774.                                      | 1.6  | 5         |
| 41 | Initial Whole Genome Sequencing of Plasma Cell Neoplasms in First Responders and Recovery Workers<br>Exposed to the World Trade Center Attack of September 11, 2001. Blood, 2020, 136, 50-51.                                                   | 1.4  | 0         |
| 42 | TCR Repertoires in Graft-Versus-Host-Disease (GVHD)-Target Tissues Reveals Tissue Specificity of the Alloimmune Response. Blood, 2020, 136, 21-23.                                                                                              | 1.4  | 1         |
| 43 | Stakeholders' Perceptions and Information Needs Regarding Research Medical Donation. Journal of<br>Pain and Symptom Management, 2019, 58, 792-804.e6.                                                                                           | 1.2  | 2         |
| 44 | CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma.<br>Abdominal Radiology, 2019, 44, 3148-3157.                                                                                                   | 2.1  | 37        |
| 45 | An analysis of genetic heterogeneity in untreated cancers. Nature Reviews Cancer, 2019, 19, 639-650.                                                                                                                                            | 28.4 | 139       |
| 46 | Cancer biology as revealed by the research autopsy. Nature Reviews Cancer, 2019, 19, 686-697.                                                                                                                                                   | 28.4 | 54        |
| 47 | Cell division rates decrease with age, providing a potential explanation for the age-dependent<br>deceleration in cancer incidence. Proceedings of the National Academy of Sciences of the United<br>States of America, 2019, 116, 20482-20488. | 7.1  | 63        |
| 48 | Promoter methylation of ADAMTS1 and BNC1 as potential biomarkers for early detection of pancreatic cancer in blood. Clinical Epigenetics, 2019, 11, 59.                                                                                         | 4.1  | 106       |
| 49 | Characterization of genetic subclonal evolution in pancreatic cancer mouse models. Nature Communications, 2019, 10, 5435.                                                                                                                       | 12.8 | 14        |
| 50 | Longitudinal follow-up of a prospective phase II trial of neoadjuvant gemcitabine and oxaliplatin in patients with resectable pancreas adenocarcinoma reveals distinct patterns of survivorship. Hpb, 2019, 21, S58-S59.                        | 0.3  | 0         |
| 51 | <i>EGFR</i> and <i>MET</i> Amplifications Determine Response to HER2 Inhibition in<br><i>ERBB2</i> -Amplified Esophagogastric Cancer. Cancer Discovery, 2019, 9, 199-209.                                                                       | 9.4  | 115       |
| 52 | Genomic Landscape of Pancreatic Adenocarcinoma in Younger versus Older Patients: Does Age<br>Matter?. Clinical Cancer Research, 2019, 25, 2185-2193.                                                                                            | 7.0  | 41        |
| 53 | Ampullary cancer: Evaluation of somatic and germline genetic alterations and association with clinical outcomes. Cancer, 2019, 125, 1441-1448.                                                                                                  | 4.1  | 28        |
| 54 | Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1692-1697.          | 7.1  | 237       |

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Homologous recombination deficiency (HRD): A biomarker for first-line (1L) platinum in advanced pancreatic ductal adenocarcinoma (PDAC) Journal of Clinical Oncology, 2019, 37, 4132-4132. | 1.6  | 10        |
| 56 | Pilot study of plasma KRAS as a prognostic biomarker in localized pancreas ductal adenocarcinoma<br>(PDAC) Journal of Clinical Oncology, 2019, 37, 294-294.                                | 1.6  | 0         |
| 57 | Association of pancreatic cancer stem cells with tumor stroma type Journal of Clinical Oncology, 2019, 37, e15771-e15771.                                                                  | 1.6  | 0         |
| 58 | Abstract 970: The mutational landscape of normal human endometrial epithelium. Cancer Research,<br>2019, 79, 970-970.                                                                      | 0.9  | 4         |
| 59 | Abstract 3083: A novel hedgehog signaling inhibitor for targeting pancreatic ductal adenocarcinoma.<br>, 2019, , .                                                                         |      | 1         |
| 60 | Abstract 107: Multimodal evolutionary dynamics of pancreatic cancer. , 2019, , .                                                                                                           |      | 0         |
| 61 | Prospective Evaluation of Germline Alterations in Patients With Exocrine Pancreatic Neoplasms.<br>Journal of the National Cancer Institute, 2018, 110, 1067-1074.                          | 6.3  | 170       |
| 62 | Unifying cancer and normal RNA sequencing data from different sources. Scientific Data, 2018, 5,<br>180061.                                                                                | 5.3  | 152       |
| 63 | Smad4 Loss Correlates With Higher Rates of Local and Distant Failure in Pancreatic Adenocarcinoma<br>Patients Receiving Adjuvant Chemoradiation. Pancreas, 2018, 47, 208-212.              | 1.1  | 28        |
| 64 | Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clinical Cancer Research, 2018, 24, 1326-1336.                                         | 7.0  | 281       |
| 65 | Minimal functional driver gene heterogeneity among untreated metastases. Science, 2018, 361, 1033-1037.                                                                                    | 12.6 | 223       |
| 66 | The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers. Cancer Cell, 2018, 34, 427-438.e6.                                                                                   | 16.8 | 633       |
| 67 | Precancerous neoplastic cells can move through the pancreatic ductal system. Nature, 2018, 561, 201-205.                                                                                   | 27.8 | 96        |
| 68 | Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science, 2018, 360, .                                                             | 12.6 | 177       |
| 69 | Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. Cancer<br>Discovery, 2018, 8, 1112-1129.                                                             | 9.4  | 676       |
| 70 | Efficacy and Safety of Curcumin in Treatment of Intestinal Adenomas in Patients With Familial<br>Adenomatous Polyposis. Gastroenterology, 2018, 155, 668-673.                              | 1.3  | 87        |
| 71 | Plasma KRAS as a biomarker for pancreatic ductal adenocarcinoma (PDAC) Journal of Clinical<br>Oncology, 2018, 36, 316-316.                                                                 | 1.6  | 2         |
| 72 | Prospective analysis of somatic and germline genetic alterations in patients with ampullary carcinomas Journal of Clinical Oncology, 2018, 36, 308-308.                                    | 1.6  | 0         |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Whole Genome Sequencing of Extramedullary Myeloma Autopsy Tumors Reveals a Genomic Portrait at<br>Culmination of Clonal Convergence. Blood, 2018, 132, 3169-3169.                        | 1.4  | 1         |
| 74 | Mytype: A Capture Based Sequencing Approach to Detect Somatic Mutations, Copy Number Changes and<br>IGH Translocations in Multiple Myeloma. Blood, 2018, 132, 5588-5588.                 | 1.4  | 0         |
| 75 | Stakeholders' perceptions and information needs regarding research medical donation (RMD)<br>Journal of Clinical Oncology, 2018, 36, 27-27.                                              | 1.6  | 5         |
| 76 | Reconstructing metastatic seeding patterns of human cancers. Nature Communications, 2017, 8, 14114.                                                                                      | 12.8 | 118       |
| 77 | Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nature Genetics, 2017, 49, 367-376.                               | 21.4 | 365       |
| 78 | Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nature Genetics, 2017, 49, 358-366.                             | 21.4 | 316       |
| 79 | Molecular pathology of pancreatic cancer and premalignant tumors. , 2017, , 139-149.e3.                                                                                                  |      | 0         |
| 80 | Transcriptional Mechanisms of Resistance to Anti–PD-1 Therapy. Clinical Cancer Research, 2017, 23,<br>3168-3180.                                                                         | 7.0  | 67        |
| 81 | Alterations of type II classical cadherin, cadherinâ€10 (CDH10), is associated with pancreatic ductal adenocarcinomas. Genes Chromosomes and Cancer, 2017, 56, 427-435.                  | 2.8  | 8         |
| 82 | Personalized Management of Pancreatic Ductal Adenocarcinoma Patients through Computational<br>Modeling. Cancer Research, 2017, 77, 3325-3335.                                            | 0.9  | 11        |
| 83 | Pancreatic carcinogenesis — several small steps or one giant leap?. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 7-8.                                                       | 17.8 | 24        |
| 84 | Real-Time Genomic Profiling of Pancreatic Ductal Adenocarcinoma: Potential Actionability and Correlation with Clinical Phenotype. Clinical Cancer Research, 2017, 23, 6094-6100.         | 7.0  | 161       |
| 85 | Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature, 2017, 551, 512-516.                                                                   | 27.8 | 854       |
| 86 | An unusual genomic variant of pancreatic ductal adenocarcinoma with an indolent clinical course.<br>Journal of Physical Education and Sports Management, 2017, 3, a001701.               | 1.2  | 6         |
| 87 | Hypermutation In Pancreatic Cancer. Gastroenterology, 2017, 152, 68-74.e2.                                                                                                               | 1.3  | 174       |
| 88 | Mutant p53 Together with TGFÎ <sup>2</sup> Signaling Influence Organ-Specific Hematogenous Colonization<br>Patterns of Pancreatic Cancer. Clinical Cancer Research, 2017, 23, 1607-1620. | 7.0  | 37        |
| 89 | Prospective assessment for pathogenic germline alterations (PGA) in pancreas cancer (PAC) Journal of Clinical Oncology, 2017, 35, 4102-4102.                                             | 1.6  | 4         |
| 90 | Local recurrences at the anastomotic area are clonally related to the primary tumor in sporadic colorectal carcinoma. Oncotarget, 2017, 8, 42487-42494.                                  | 1.8  | 10        |

| #   | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Tumor diversity and evolution revealed through RADseq. Oncotarget, 2017, 8, 41792-41805.                                                                                                                                                                     | 1.8  | 9         |
| 92  | Do pancreas cancer stem cells play crucial role in survival outcome?. Journal of Clinical Oncology, 2017, 35, e15721-e15721.                                                                                                                                 | 1.6  | 0         |
| 93  | Abstract 2829: Identification of transcriptomic signatures of organotropism in pancreatic cancer metastasis. , 2017, , .                                                                                                                                     |      | 0         |
| 94  | Abstract 504: Quantification of nucleic acid quality in postmortem tissues from a cancer research autopsy program. , 2017, , .                                                                                                                               |      | 0         |
| 95  | Abstract 2910: Inter metastatic genetic heterogeneity is a characteristic feature of recurrent pancreatic cancer. , 2017, , .                                                                                                                                |      | 0         |
| 96  | Recurrent, truncating <i>SOX9</i> mutations are associated with SOX9 overexpression, <i>KRAS</i> mutation, and <i>TP53</i> wild type status in colorectal carcinoma. Oncotarget, 2016, 7, 50875-50882.                                                       | 1.8  | 26        |
| 97  | Reliable Detection of Somatic Mutations in Fine Needle Aspirates of Pancreatic Cancer With<br>Next-generation Sequencing. Annals of Surgery, 2016, 263, 153-161.                                                                                             | 4.2  | 45        |
| 98  | ETS-Transcription Factor ETV1 Regulates Stromal Expansion andÂMetastasis in Pancreatic Cancer.<br>Gastroenterology, 2016, 151, 540-553.e14.                                                                                                                  | 1.3  | 44        |
| 99  | Circulating Tumor Cell Phenotype Predicts Recurrence and Survival in Pancreatic Adenocarcinoma.<br>Annals of Surgery, 2016, 264, 1073-1081.                                                                                                                  | 4.2  | 131       |
| 100 | p120 Catenin Suppresses Basal Epithelial Cell Extrusion in Invasive Pancreatic Neoplasia. Cancer<br>Research, 2016, 76, 3351-3363.                                                                                                                           | 0.9  | 29        |
| 101 | TGF-β Tumor Suppression through a Lethal EMT. Cell, 2016, 164, 1015-1030.                                                                                                                                                                                    | 28.9 | 488       |
| 102 | Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nature Medicine, 2016, 22, 497-505.                                                                                                   | 30.7 | 456       |
| 103 | Cyst Fluid Analysis in Pancreatic Intraductal Papillary Mucinous Neoplasms. Clinical Cancer Research, 2016, 22, 4966-4967.                                                                                                                                   | 7.0  | 5         |
| 104 | Distinct pathways of pathogenesis of intraductal oncocytic papillary neoplasms and intraductal<br>papillary mucinous neoplasms of the pancreas. Virchows Archiv Fur Pathologische Anatomie Und<br>Physiologie Und Fur Klinische Medizin, 2016, 469, 523-532. | 2.8  | 65        |
| 105 | Patient-reported outcomes of a multicenter phase 2 study investigating gemcitabine and stereotactic body radiation therapy in locally advanced pancreatic cancer. Practical Radiation Oncology, 2016, 6, 417-424.                                            | 2.1  | 19        |
| 106 | Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell<br>Reports, 2016, 17, 2445-2459.                                                                                                                           | 6.4  | 450       |
| 107 | Pancreatic cancer biology and genetics from an evolutionary perspective. Nature Reviews Cancer, 2016, 16, 553-565.                                                                                                                                           | 28.4 | 316       |
| 108 | Metastatic progression is associated with dynamic changes in the local microenvironment. Nature Communications, 2016, 7, 12819.                                                                                                                              | 12.8 | 99        |

| #   | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | IGFBP-3 Gene Methylation in Primary Tumor Predicts Recurrence of Stage II Colorectal Cancers. Annals of Surgery, 2016, 263, 337-344.                                                                                                                              | 4.2  | 21        |
| 110 | The oncocytic subtype is genetically distinct from other pancreatic intraductal papillary mucinous neoplasm subtypes. Modern Pathology, 2016, 29, 1058-1069.                                                                                                      | 5.5  | 82        |
| 111 | Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discovery, 2016, 6, 166-175.                                                                                                                                      | 9.4  | 282       |
| 112 | Genomic instability in pancreatic adenocarcinoma: a new step towards precision medicine and novel therapeutic approaches. Expert Review of Gastroenterology and Hepatology, 2016, 10, 1-13.                                                                       | 3.0  | 39        |
| 113 | Genomic analyses identify molecular subtypes of pancreatic cancer. Nature, 2016, 531, 47-52.                                                                                                                                                                      | 27.8 | 2,700     |
| 114 | p53 mutations cooperate with oncogenic Kras to promote adenocarcinoma from pancreatic ductal cells. Oncogene, 2016, 35, 4282-4288.                                                                                                                                | 5.9  | 108       |
| 115 | Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy. Expert Opinion on Therapeutic Targets, 2016, 20, 341-359.                                                                            | 3.4  | 34        |
| 116 | Quantification of nucleic acid quality in postmortem tissues from a cancer research autopsy program. Oncotarget, 2016, 7, 66906-66921.                                                                                                                            | 1.8  | 17        |
| 117 | Tumors with unmethylated MLH1 and the CpG island methylator phenotype are associated with a poor prognosis in stage II colorectal cancer patients. Oncotarget, 2016, 7, 86480-86489.                                                                              | 1.8  | 15        |
| 118 | Genomic landscape of pancreatic adenocarcinoma: Does age matter?. Journal of Clinical Oncology,<br>2016, 34, 250-250.                                                                                                                                             | 1.6  | 0         |
| 119 | Do pancreatic cancer (PDA) stem cell markers predict biologic behavior?. Journal of Clinical Oncology, 2016, 34, 4112-4112.                                                                                                                                       | 1.6  | 0         |
| 120 | Abstract 2374: Reconstructing the evolutionary history of metastatic cancers. , 2016, , .                                                                                                                                                                         |      | 0         |
| 121 | Abstract 2419: Anastomotic recurrences are clonally related to primary tumors in sporadic colorectal carcinoma. , 2016, , .                                                                                                                                       |      | 0         |
| 122 | Abstract PR03: Mutant p53 promotes adenocarcinoma in pancreatic ductal cells. , 2016, , .                                                                                                                                                                         |      | 0         |
| 123 | Whole Exome Sequencing from Nine Independent Sites of Extraosseous Disease in a Single Patient with<br>Relapsed Multiple Myeloma Show That Extramedullary Disease Arise through a Combination of<br>Branched and Parallel Evolution. Blood, 2016, 128, 2090-2090. | 1.4  | 0         |
| 124 | Transflip mutations produce deletions in pancreatic cancer. Genes Chromosomes and Cancer, 2015, 54, 472-481.                                                                                                                                                      | 2.8  | 9         |
| 125 | The Hidden Beauty in Biomedical Imaging. Journal of Visual Communication in Medicine, 2015, 38, 220-227.                                                                                                                                                          | 0.6  | 1         |
| 126 | Organoid Models of Human and Mouse Ductal Pancreatic Cancer. Cell, 2015, 160, 324-338.                                                                                                                                                                            | 28.9 | 1,584     |

8

| #   | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | CNS Involvement in Pancreatic Adenocarcinoma: a Report of Eight Cases from the Johns Hopkins<br>Hospital and Review of Literature. Journal of Gastrointestinal Cancer, 2015, 46, 5-8.                          | 1.3  | 20        |
| 128 | Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 2015, 518, 495-501.                                                                                                              | 27.8 | 2,132     |
| 129 | Are We Systematically Under-Dosing Patients With Fluorouracil?. Journal of Clinical Oncology, 2015, 33, e36-e37.                                                                                               | 1.6  | 8         |
| 130 | Semaphorin 3D autocrine signaling mediates the metastatic role of annexin A2 in pancreatic cancer.<br>Science Signaling, 2015, 8, ra77.                                                                        | 3.6  | 89        |
| 131 | Phase 2 multiâ€institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer, 2015, 121, 1128-1137.          | 4.1  | 447       |
| 132 | Retrotransposon insertions in the clonal evolution of pancreatic ductal adenocarcinoma. Nature<br>Medicine, 2015, 21, 1060-1064.                                                                               | 30.7 | 127       |
| 133 | Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution.<br>Genome Research, 2015, 25, 1536-1545.                                                                       | 5.5  | 121       |
| 134 | A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Research, 2015, 75, 4272-4282.                                                                                               | 0.9  | 113       |
| 135 | Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nature Genetics, 2015, 47, 1168-1178.                                                     | 21.4 | 1,491     |
| 136 | MUC1 Promoter–Driven DTA as a Targeted Therapeutic Strategy against Pancreatic Cancer. Molecular<br>Cancer Research, 2015, 13, 439-448.                                                                        | 3.4  | 18        |
| 137 | Abstract 4137: Clonal evolution defines the natural history of metastatic pancreatic cancer. , 2015, , .                                                                                                       |      | 3         |
| 138 | Abstract A68: Hypoxia-induced CHK1 repression may enhance the mutator phenotype of pancreatic cancer cells. , 2015, , .                                                                                        |      | 0         |
| 139 | Abstract 4186: p120 catenin: A novel regulator of epithelial cell delamination in early Kras-driven pancreatic cancer. , 2015, , .                                                                             |      | 0         |
| 140 | Processed pseudogenes acquired somatically during cancer development. Nature Communications, 2014, 5, 3644.                                                                                                    | 12.8 | 86        |
| 141 | CpG island methylator phenotype and its association with malignancy in sporadic duodenal adenomas.<br>Epigenetics, 2014, 9, 738-746.                                                                           | 2.7  | 7         |
| 142 | The Tumor Suppressor <i>rpl36</i> Restrains KRAS <sup>G12V</sup> -Induced Pancreatic Cancer.<br>Zebrafish, 2014, 11, 551-559.                                                                                  | 1.1  | 24        |
| 143 | dCK expression correlates with 5-fluorouracil efficacy and HuR cytoplasmic expression in pancreatic cancer. Cancer Biology and Therapy, 2014, 15, 688-698.                                                     | 3.4  | 39        |
| 144 | Functional p38 MAPK Identified by Biomarker Profiling of Pancreatic Cancer Restrains Growth<br>through JNK Inhibition and Correlates with Improved Survival. Clinical Cancer Research, 2014, 20,<br>6200-6211. | 7.0  | 38        |

| #   | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Autophagy, p53, and Pancreatic Cancer. New England Journal of Medicine, 2014, 370, 1352-1353.                                                                                                                                                                         | 27.0 | 35        |
| 146 | The association between circulating high-sensitivity C-reactive protein concentration and pathologic measures of colonic inflammation. Cancer Causes and Control, 2014, 25, 409-418.                                                                                  | 1.8  | 10        |
| 147 | Long Interspersed Element-1 Protein Expression Is a Hallmark of Many Human Cancers. American<br>Journal of Pathology, 2014, 184, 1280-1286.                                                                                                                           | 3.8  | 250       |
| 148 | A draft map of the human proteome. Nature, 2014, 509, 575-581.                                                                                                                                                                                                        | 27.8 | 1,948     |
| 149 | Heterogeneity of Pancreatic Cancer Metastases in a Single Patient Revealed by Quantitative<br>Proteomics. Molecular and Cellular Proteomics, 2014, 13, 2803-2811.                                                                                                     | 3.8  | 52        |
| 150 | Hypersensitivities for Acetaldehyde and Other Agents among Cancer Cells Null for Clinically Relevant<br>Fanconi Anemia Genes. American Journal of Pathology, 2014, 184, 260-270.                                                                                      | 3.8  | 11        |
| 151 | Stromal Elements Act to Restrain, Rather Than Support, Pancreatic Ductal Adenocarcinoma. Cancer<br>Cell, 2014, 25, 735-747.                                                                                                                                           | 16.8 | 1,616     |
| 152 | Association of ALDH-expressing cancer stem cells with survival in patients with resected pancreatic adenocarcinoma treated with adjuvant chemoradiation Journal of Clinical Oncology, 2014, 32, 262-262.                                                              | 1.6  | 0         |
| 153 | Detection of somatic mutations in fine needle aspirates of pancreatic cancer with next-generation sequencing Journal of Clinical Oncology, 2014, 32, e15225-e15225.                                                                                                   | 1.6  | 0         |
| 154 | Abstract 66: p120 catenin: A novel regulator of PanIN epithelial cell delamination in preinvasive pancreatic cancer. , 2014, , .                                                                                                                                      |      | 0         |
| 155 | Molecular pathways in pancreatic carcinogenesis. Journal of Surgical Oncology, 2013, 107, 8-14.                                                                                                                                                                       | 1.7  | 70        |
| 156 | Novel Methylation Biomarker Panel for the Early Detection of Pancreatic Cancer. Clinical Cancer Research, 2013, 19, 6544-6555.                                                                                                                                        | 7.0  | 129       |
| 157 | Resection of borderline resectable pancreatic cancer after neoadjuvant chemoradiation does not depend on improved radiographic appearance of tumor–vessel relationships. Journal of Radiation Oncology, 2013, 2, 413-425.                                             | 0.7  | 74        |
| 158 | Pancreatic cancer genomics: insights and opportunities for clinical translation. Genome Medicine, 2013, 5, 26.                                                                                                                                                        | 8.2  | 18        |
| 159 | <i>KRAS</i> G>A mutation favors poor tumor differentiation but may not be associated with prognosis in patients with curatively resected duodenal adenocarcinoma. International Journal of Cancer, 2013, 132, 2502-2509.                                              | 5.1  | 13        |
| 160 | FAM190A Deficiency Creates a Cell Division Defect. American Journal of Pathology, 2013, 183, 296-303.                                                                                                                                                                 | 3.8  | 25        |
| 161 | Correlation of Smad4 Status With Outcomes in Patients Receiving Erlotinib Combined With Adjuvant<br>Chemoradiation and Chemotherapy After Resection for Pancreatic Adenocarcinoma. International<br>Journal of Radiation Oncology Biology Physics, 2013, 87, 458-459. | 0.8  | 21        |
| 162 | Young Patients Undergoing Resection of Pancreatic Cancer Fare Better than their Older<br>Counterparts. Journal of Gastrointestinal Surgery, 2013, 17, 339-344.                                                                                                        | 1.7  | 53        |

| #   | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Evolution and dynamics of pancreatic cancer progression. Oncogene, 2013, 32, 5253-5260.                                                                                                                                                         | 5.9  | 167       |
| 164 | Considerations for Sequencing Analyses of Pancreatic Cancer Progression and Metastasis. Methods<br>in Molecular Biology, 2013, 980, 121-129.                                                                                                    | 0.9  | 0         |
| 165 | A Broad Survey of Cathepsin K Immunoreactivity in Human Neoplasms. American Journal of Clinical<br>Pathology, 2013, 139, 151-159.                                                                                                               | 0.7  | 44        |
| 166 | RhoC Interacts with Integrin α5β1 and Enhances Its Trafficking in Migrating Pancreatic Carcinoma Cells.<br>PLoS ONE, 2013, 8, e81575.                                                                                                           | 2.5  | 20        |
| 167 | The Genetics of Pancreatic Cancer Progression. , 2013, , 171-184.                                                                                                                                                                               |      | Ο         |
| 168 | Abstract IA5: Genetics of clonal progression in pancreatic cancer. , 2013, , .                                                                                                                                                                  |      | 0         |
| 169 | Blood-based screening for methylation changes in colorectal cancer patients using novel nanotechnologies Journal of Clinical Oncology, 2013, 31, 384-384.                                                                                       | 1.6  | 1         |
| 170 | Abstract 3580: Acetaldehyde and drug hypersensitivities of Fanconi anemia defects: Implications for cancer initiation, prevention, and therapy , 2013, , .                                                                                      |      | 0         |
| 171 | Abstract 4006: Smad6 upregulation provides an alternative mechanism for BMP inactivation in SMAD4 wild type pancreatic cancers. , 2013, , .                                                                                                     |      | 1         |
| 172 | Is successful resection following neoadjuvant radiation therapy for borderline resectable pancreatic cancer dependent on improved tumor-vessel relationships?. Journal of Clinical Oncology, 2013, 31, 4057-4057.                               | 1.6  | 1         |
| 173 | Clinicopathologic and Genetic Characterization of Traditional Serrated Adenomas of the Colon.<br>American Journal of Clinical Pathology, 2012, 138, 356-366.                                                                                    | 0.7  | 61        |
| 174 | Keys to Personalized Care in Pancreatic Oncology. Journal of Clinical Oncology, 2012, 30, 4049-4950.                                                                                                                                            | 1.6  | 18        |
| 175 | The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature, 2012, 486, 266-270.                                                                                                                                               | 27.8 | 297       |
| 176 | CpG Island Methylator Phenotype–Positive Tumors in the Absence of <i>MLH1</i> Methylation<br>Constitute a Distinct Subset of Duodenal Adenocarcinomas and Are Associated with Poor Prognosis.<br>Clinical Cancer Research, 2012, 18, 4743-4752. | 7.0  | 45        |
| 177 | Genetic Basis of Pancreas Cancer Development and Progression: Insights from Whole-Exome and<br>Whole-Genome Sequencing. Clinical Cancer Research, 2012, 18, 4257-4265.                                                                          | 7.0  | 122       |
| 178 | Genetic evolution of pancreatic cancer: lessons learnt from the pancreatic cancer genome sequencing project. Gut, 2012, 61, 1085-1094.                                                                                                          | 12.1 | 130       |
| 179 | Small Cell and Large Cell Neuroendocrine Carcinomas of the Pancreas are Genetically Similar and<br>Distinct From Well-differentiated Pancreatic Neuroendocrine Tumors. American Journal of Surgical<br>Pathology, 2012, 36, 173-184.            | 3.7  | 468       |
| 180 | Clinical Significance of the Genetic Landscape of Pancreatic Cancer and Implications for Identification of Potential Long-term Survivors. Clinical Cancer Research, 2012, 18, 6339-6347.                                                        | 7.0  | 220       |

| #   | Article                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Rapid Characterization of Candidate Biomarkers for Pancreatic Cancer Using Cell Microarrays<br>(CMAs). Journal of Proteome Research, 2012, 11, 5556-5563.               | 3.7  | 14        |
| 182 | A new branch on the tree: Next-generation sequencing in the study of cancer evolution. Seminars in<br>Cell and Developmental Biology, 2012, 23, 237-242.                | 5.0  | 33        |
| 183 | Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum<br>Treatment Strategies. Cell, 2012, 148, 362-375.                        | 28.9 | 369       |
| 184 | Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 2012, 491, 399-405.                                                                | 27.8 | 1,741     |
| 185 | Sessile serrated adenomas: high-risk lesions?. Human Pathology, 2012, 43, 1808-1814.                                                                                    | 2.0  | 25        |
| 186 | Personalized Medicine in Pancreatic Cancer: Prognosis and Potential Implications for Therapy. Journal of Gastrointestinal Surgery, 2012, 16, 1651-1652.                 | 1.7  | 3         |
| 187 | HMGA1 Induces Intestinal Polyposis in Transgenic Mice and Drives Tumor Progression and Stem Cell Properties in Colon Cancer Cells. PLoS ONE, 2012, 7, e30034.           | 2.5  | 93        |
| 188 | Origin of metastases: Subspecies of cancers generated by intrinsic karyotypic variations. Cell Cycle, 2012, 11, 1151-1166.                                              | 2.6  | 21        |
| 189 | Genetically Defined Subsets of Human Pancreatic Cancer Show Unique <i>In Vitro</i> Chemosensitivity. Clinical Cancer Research, 2012, 18, 6519-6530.                     | 7.0  | 60        |
| 190 | Somatic mutations in the chromatin remodeling gene <i>ARID1A</i> occur in several tumor types.<br>Human Mutation, 2012, 33, 100-103.                                    | 2.5  | 263       |
| 191 | DNA methylation biomarker candidates for early detection of colon cancer. Tumor Biology, 2012, 33, 363-372.                                                             | 1.8  | 57        |
| 192 | Deep Clonal Profiling of Formalin Fixed Paraffin Embedded Clinical Samples. PLoS ONE, 2012, 7, e50586.                                                                  | 2.5  | 42        |
| 193 | Abstract 3961: Computational modeling of pancreatic cancer reveals growth and dissemination kinetics and suggests optimum treatment strategies. , 2012, , .             |      | 1         |
| 194 | Abstract 5318: DPC4 loss results in the activation of alternative oncogenic pathways in pancreatic cancer. , 2012, , .                                                  |      | 0         |
| 195 | Abstract SY30-01: Evolution and dynamics of pancreatic cancer progression. , 2012, , .                                                                                  |      | 0         |
| 196 | Abstract 1269: Activation of diverse signaling pathways in pancreatic cancer revealed by phosphoproteomics. , 2012, , .                                                 |      | 0         |
| 197 | Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 2011, 475, 106-109.                                                          | 27.8 | 1,831     |
| 198 | Prevalence of the Alternative Lengthening of Telomeres Telomere Maintenance Mechanism in Human<br>Cancer Subtypes. American Journal of Pathology, 2011, 179, 1608-1615. | 3.8  | 423       |

| #   | Article                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development.<br>Cell, 2011, 144, 27-40.                                                                                                                                 | 28.9 | 2,020     |
| 200 | AGR2 Is a Novel Surface Antigen That Promotes the Dissemination of Pancreatic Cancer Cells through Regulation of Cathepsins B and D. Cancer Research, 2011, 71, 7091-7102.                                                                                  | 0.9  | 124       |
| 201 | Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers. Oncotarget, 2011, 2, 627-637.                                                                                             | 1.8  | 383       |
| 202 | Establishment and Characterization of a New Cell Line, A99, From a Primary Small Cell Carcinoma of the Pancreas. Pancreas, 2011, 40, 905-910.                                                                                                               | 1.1  | 21        |
| 203 | Histologic Variations in Juvenile Polyp Phenotype Correlate With Genetic Defect Underlying Juvenile<br>Polyposis. American Journal of Surgical Pathology, 2011, 35, 530-536.                                                                                | 3.7  | 34        |
| 204 | Sessile serrated adenomas and classical adenomas: An epigenetic perspective on premalignant<br>neoplastic lesions of the gastrointestinal tract. International Journal of Cancer, 2011, 129, 1889-1898.                                                     | 5.1  | 49        |
| 205 | Genomic and Epigenomic Integration Identifies a Prognostic Signature in Colon Cancer. Clinical<br>Cancer Research, 2011, 17, 1535-1545.                                                                                                                     | 7.0  | 136       |
| 206 | Loss of E-cadherin expression and outcome among patients with resectable pancreatic adenocarcinomas. Modern Pathology, 2011, 24, 1237-1247.                                                                                                                 | 5.5  | 90        |
| 207 | GATA6 Activates Wnt Signaling in Pancreatic Cancer by Negatively Regulating the Wnt Antagonist<br>Dickkopf-1. PLoS ONE, 2011, 6, e22129.                                                                                                                    | 2.5  | 83        |
| 208 | Disruption of p16 and Activation of Kras in Pancreas Increase Ductal Adenocarcinoma Formation and Metastasis in vivo. Oncotarget, 2011, 2, 862-873.                                                                                                         | 1.8  | 89        |
| 209 | Abstract 2438: BAMBI Is overexpressed in metastatic pancreatic cancers with genetically Intact TGF-Î <sup>2</sup> pathways: A potential mechanism to escape TGF-Î <sup>2</sup> signaling during metastasis formation. Cancer Research, 2011, 71, 2438-2438. | 0.9  | 1         |
| 210 | Abstract 931: HMGA1 drives expansion of the intestinal stem cell compartment in transgenic mice and tumor progression in colon cancer cells. , 2011, , .                                                                                                    |      | 0         |
| 211 | Abstract 4291: Functional p38 mitoge-activated protein kinase activity restrains pancreatic cancer growth in vitro and correlates with improved eurvival of pancreatic cancer patients. , 2011, , .                                                         |      | 0         |
| 212 | Histopathologic Basis for the Favorable Survival after Resection of Intraductal Papillary Mucinous<br>Neoplasm-Associated Invasive Adenocarcinoma of the Pancreas. Annals of Surgery, 2010, 251, 470-476.                                                   | 4.2  | 210       |
| 213 | Reprimo-like is a P53 Responsive Gene Whose Promoter Methylation May Predict for Radiation<br>Responsiveness in Pancreatic Cancer. International Journal of Radiation Oncology Biology Physics,<br>2010, 78, S129.                                          | 0.8  | Ο         |
| 214 | Integrated preclinical and clinical development of mTOR inhibitors in pancreatic cancer. British<br>Journal of Cancer, 2010, 103, 649-655.                                                                                                                  | 6.4  | 65        |
| 215 | Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature, 2010, 464, 610-614.                                                                                                                                                           | 27.8 | 470       |
| 216 | The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 2010, 467, 1109-1113.                                                                                                                                             | 27.8 | 1,200     |

| #   | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010, 467, 1114-1117.                                                                                          | 27.8 | 2,184     |
| 218 | Cross-platform Comparison of Two Pancreatic Cancer Phenotypes. Cancer Informatics, 2010, 9,<br>CIN.S5755.                                                                                                | 1.9  | 1         |
| 219 | Prognostic Significance of Tumorigenic Cells With Mesenchymal Features in Pancreatic<br>Adenocarcinoma. Journal of the National Cancer Institute, 2010, 102, 340-351.                                    | 6.3  | 392       |
| 220 | A Six-Gene Signature Predicts Survival of Patients with Localized Pancreatic Ductal Adenocarcinoma.<br>PLoS Medicine, 2010, 7, e1000307.                                                                 | 8.4  | 202       |
| 221 | HMGA1 correlates with advanced tumor grade and decreased survival in pancreatic ductal adenocarcinoma. Modern Pathology, 2010, 23, 98-104.                                                               | 5.5  | 75        |
| 222 | Phase I Trial of Oxaliplatin, Infusional 5-Fluorouracil, and Leucovorin (FOLFOX4) With Erlotinib and Bevacizumab in Colorectal Cancer. Clinical Colorectal Cancer, 2010, 9, 297-304.                     | 2.3  | 18        |
| 223 | The Pancreas. , 2010, , 891-904.                                                                                                                                                                         |      | 3         |
| 224 | Cronkhite-Canada Syndrome: Gastric Involvement Diagnosed by MDCT. Case Reports in Medicine, 2009, 2009, 1-4.                                                                                             | 0.7  | 9         |
| 225 | Inhibition of Hedgehog Signaling Enhances Delivery of Chemotherapy in a Mouse Model of Pancreatic<br>Cancer. Science, 2009, 324, 1457-1461.                                                              | 12.6 | 2,730     |
| 226 | <i>DPC4</i> Gene Status of the Primary Carcinoma Correlates With Patterns of Failure in Patients<br>With Pancreatic Cancer. Journal of Clinical Oncology, 2009, 27, 1806-1813.                           | 1.6  | 976       |
| 227 | Exomic Sequencing Identifies <i>PALB2</i> as a Pancreatic Cancer Susceptibility Gene. Science, 2009, 324, 217-217.                                                                                       | 12.6 | 713       |
| 228 | Integrin α2 Mediates Selective Metastasis to the Liver. Cancer Research, 2009, 69, 7320-7328.                                                                                                            | 0.9  | 75        |
| 229 | Genetic Mutations Associated with Cigarette Smoking in Pancreatic Cancer. Cancer Research, 2009, 69, 3681-3688.                                                                                          | 0.9  | 126       |
| 230 | <i>SMAD4</i> Gene Mutations Are Associated with Poor Prognosis in Pancreatic Cancer. Clinical Cancer Research, 2009, 15, 4674-4679.                                                                      | 7.0  | 335       |
| 231 | Methylation of <i>TFPI2</i> in Stool DNA: A Potential Novel Biomarker for the Detection of Colorectal Cancer. Cancer Research, 2009, 69, 4691-4699.                                                      | 0.9  | 204       |
| 232 | Downregulation of sodium transporters and NHERF proteins in IBD patients and mouse colitis models:<br>Potential contributors to IBD-associated diarrhea. Inflammatory Bowel Diseases, 2009, 15, 261-274. | 1.9  | 107       |
| 233 | HMGA2 protein expression correlates with lymph node metastasis and increased tumor grade in pancreatic ductal adenocarcinoma. Modern Pathology, 2009, 22, 43-49.                                         | 5.5  | 96        |
| 234 | Epigenetic Changes in Cancer. Annual Review of Pathology: Mechanisms of Disease, 2009, 4, 229-249.                                                                                                       | 22.4 | 149       |

| #   | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Increased Cyclooxygenase-2 Expression in Juvenile Polyposis Syndrome. Clinical Gastroenterology and Hepatology, 2009, 7, 93-97.                                                                                           | 4.4  | 14        |
| 236 | Beta-catenin Nuclear Labeling is a Common Feature of Sessile Serrated Adenomas and Correlates With<br>Early Neoplastic Progression After BRAF Activation. American Journal of Surgical Pathology, 2009, 33,<br>1823-1832. | 3.7  | 97        |
| 237 | Cancer Gene Profiling in Pancreatic Cancer. Methods in Molecular Biology, 2009, 576, 279-292.                                                                                                                             | 0.9  | 5         |
| 238 | The Pathology and Genetics of Metastatic Pancreatic Cancer. Archives of Pathology and Laboratory Medicine, 2009, 133, 413-422.                                                                                            | 2.5  | 186       |
| 239 | The developmental transcription factor Gata4 is overexpressed in pancreatic ductal adenocarcinoma.<br>International Journal of Clinical and Experimental Pathology, 2009, 3, 47-55.                                       | 0.5  | 11        |
| 240 | Serial analysis of gene expression of lobular carcinoma in situ identifies down regulation of claudin<br>4 and overexpression of matrix metalloproteinase 9. Breast Cancer Research, 2008, 10, R91.                       | 5.0  | 26        |
| 241 | Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses. Science, 2008, 321, 1801-1806.                                                                                                   | 12.6 | 3,755     |
| 242 | Occurrence of Colorectal Adenomas in Younger Adults: An Epidemiologic Necropsy Study. Clinical<br>Gastroenterology and Hepatology, 2008, 6, 1011-1015.                                                                    | 4.4  | 58        |
| 243 | Coordinated Epidermal Growth Factor Receptor Pathway Gene Overexpression Predicts Epidermal<br>Growth Factor Receptor Inhibitor Sensitivity in Pancreatic Cancer. Cancer Research, 2008, 68,<br>2841-2849.                | 0.9  | 89        |
| 244 | Frequent genomic copy number gain and overexpression of GATA-6 in pancreatic carcinoma. Cancer<br>Biology and Therapy, 2008, 7, 1593-1601.                                                                                | 3.4  | 65        |
| 245 | Copy number alterations in pancreatic cancer identify recurrent <i>PAK4</i> amplification. Cancer Biology and Therapy, 2008, 7, 1793-1802.                                                                                | 3.4  | 120       |
| 246 | Increased expression of cytoplasmic HuR in familial adenomatous polyposis. Cancer Biology and Therapy, 2008, 7, 424-427.                                                                                                  | 3.4  | 27        |
| 247 | Frequent β-Catenin Nuclear Labeling in Sessile Serrated Polyps of the Colorectum With Neoplastic<br>Potential. American Journal of Clinical Pathology, 2008, 129, 416-423.                                                | 0.7  | 45        |
| 248 | Absence of E-Cadherin Expression Distinguishes Noncohesive from Cohesive Pancreatic Cancer.<br>Clinical Cancer Research, 2008, 14, 412-418.                                                                               | 7.0  | 145       |
| 249 | Patchy Distribution of Pathologic Abnormalities in Autoimmune Pancreatitis. American Journal of Surgical Pathology, 2008, 32, 1762-1769.                                                                                  | 3.7  | 35        |
| 250 | Gene expression profiles associated with advanced pancreatic cancer. International Journal of Clinical and Experimental Pathology, 2008, 1, 32-43.                                                                        | 0.5  | 17        |
| 251 | Differential expression of multiple genes in association with MADH4/DPC4/SMAD4 inactivation in pancreatic cancer. International Journal of Clinical and Experimental Pathology, 2008, 1, 510-7.                           | 0.5  | 12        |
| 252 | Blockade of Hedgehog Signaling Inhibits Pancreatic Cancer Invasion and Metastases: A New Paradigm<br>for Combination Therapy in Solid Cancers. Cancer Research, 2007, 67, 2187-2196.                                      | 0.9  | 647       |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | High Cancer-Specific Expression of Mesothelin (MSLN) Is Attributable to an Upstream Enhancer<br>Containing a Transcription Enhancer Factor–Dependent MCAT Motif. Cancer Research, 2007, 67,<br>9055-9065.                                 | 0.9  | 55        |
| 254 | Enhanced sensitivity to IGF-II signaling links loss of imprinting of <i>IGF2</i> to increased cell proliferation and tumor risk. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20926-20931. | 7.1  | 97        |
| 255 | Optimizing the development of targeted agents in pancreatic cancer: tumor fine-needle aspiration<br>biopsy as a platform for novel prospective ex vivo drug sensitivity assays. Molecular Cancer<br>Therapeutics, 2007, 6, 515-523.       | 4.1  | 26        |
| 256 | Risk of colorectal cancer in juvenile polyposis. Gut, 2007, 56, 965-967.                                                                                                                                                                  | 12.1 | 228       |
| 257 | Evaluation of GATA-4 and GATA-5 methylation profiles in human pancreatic cancers indicate promoter methylation patterns distinct from other human tumor types. Cancer Biology and Therapy, 2007, 6, 1546-1552.                            | 3.4  | 33        |
| 258 | Peritumoral Fibroblast SPARC Expression and Patient Outcome With Resectable Pancreatic Adenocarcinoma. Journal of Clinical Oncology, 2007, 25, 319-325.                                                                                   | 1.6  | 372       |
| 259 | Dual mitogen-activated protein kinase and epidermal growth factor receptor inhibition in biliary and pancreatic cancer. Molecular Cancer Therapeutics, 2007, 6, 1079-1088.                                                                | 4.1  | 30        |
| 260 | Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clinical and Experimental Metastasis, 2007, 23, 357-365.                                                         | 3.3  | 56        |
| 261 | Aberrant methylation ofReprimo correlates with genetic instability and predicts poor prognosis in pancreatic ductal adenocarcinoma. Cancer, 2006, 107, 251-257.                                                                           | 4.1  | 43        |
| 262 | An <i>In vivo</i> Platform for Translational Drug Development in Pancreatic Cancer. Clinical Cancer<br>Research, 2006, 12, 4652-4661.                                                                                                     | 7.0  | 407       |
| 263 | When should one subtract background fluorescence in 2-color microarrays?. Biostatistics, 2006, 8, 695-707.                                                                                                                                | 1.5  | 23        |
| 264 | Identifying Allelic Loss and Homozygous Deletions in Pancreatic Cancer without Matched Normals<br>Using High-Density Single-Nucleotide Polymorphism Arrays. Cancer Research, 2006, 66, 7920-7928.                                         | 0.9  | 78        |
| 265 | Immunohistochemical and Genetic Evaluation of Deoxycytidine Kinase in Pancreatic Cancer:<br>Relationship to Molecular Mechanisms of Gemcitabine Resistance and Survival. Clinical Cancer<br>Research, 2006, 12, 2492-2497.                | 7.0  | 141       |
| 266 | Sessile Serrated Adenomas With Low- and High-Grade Dysplasia and Early Carcinomas. American<br>Journal of Clinical Pathology, 2006, 126, 564-571.                                                                                         | 0.7  | 158       |
| 267 | Optimizing targeted agents development in pancreatic cancer: A fine-needle aspirate biopsy (FNAB)<br>based <i>ex vivo</i> and <i>in vivo</i> assay. Journal of Clinical Oncology, 2006, 24, 3002-3002.                                    | 1.6  | 0         |
| 268 | Immunohistochemistry and <i>In Situ </i> Hybridization in Pancreatic Neoplasia. , 2005, 103, 067-088.                                                                                                                                     |      | 1         |
| 269 | Nuclear β-Catenin Expression Distinguishes Deep Fibromatosis From Other Benign and Malignant<br>Fibroblastic and Myofibroblastic Lesions. American Journal of Surgical Pathology, 2005, 29, 653-659.                                      | 3.7  | 302       |
| 270 | RPL38, FOSL1, and UPP1 Are Predominantly Expressed in the Pancreatic Ductal Epithelium. Pancreas, 2005, 30, 158-167.                                                                                                                      | 1.1  | 29        |

| #   | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Epigenetic inactivation of TFPI-2 as a common mechanism associated with growth and invasion of pancreatic ductal adenocarcinoma. Oncogene, 2005, 24, 850-858.                                                                                                     | 5.9  | 144       |
| 272 | Increased Cyclooxygenase-2 Expression in Duodenal Compared with Colonic Tissues in Familial<br>Adenomatous Polyposis and Relationship to the â^'765G → C COX-2 Polymorphism. Clinical Cancer<br>Research, 2005, 11, 4090-4096.                                    | 7.0  | 58        |
| 273 | Assessment of epidermal growth factor receptor (EGFR) signaling in paired colorectal cancer and<br>normal colon tissue samples using computer-aided immunohistochemical analysis. Cancer Biology and<br>Therapy, 2005, 4, 1381-1386.                              | 3.4  | 35        |
| 274 | Immortalizing the complexity of cancer metastasis: Genetic features of lethal metastatic pancreatic cancer obtained from rapid autopsy. Cancer Biology and Therapy, 2005, 4, 548-554.                                                                             | 3.4  | 132       |
| 275 | Homozygous deletion of the MTAP gene in invasive adenocarcinoma of the pancreas and in periampullary cancer: A potential new target for therapy. Cancer Biology and Therapy, 2005, 4, 90-93.                                                                      | 3.4  | 71        |
| 276 | Stromal responses to carcinomas of the pancreas: Juxtatumoral gene expression conforms to the infiltrating pattern and not the biologic subtype. Cancer Biology and Therapy, 2005, 4, 302-307.                                                                    | 3.4  | 35        |
| 277 | Loss of Imprinting of <i>Igf2</i> Alters Intestinal Maturation and Tumorigenesis in Mice. Science, 2005, 307, 1976-1978.                                                                                                                                          | 12.6 | 312       |
| 278 | Pancreaticobiliary Cancers With Deficient Methylenetetrahydrofolate Reductase Genotypes. Clinical<br>Gastroenterology and Hepatology, 2005, 3, 752-760.                                                                                                           | 4.4  | 40        |
| 279 | Claudin 4 Protein Expression in Primary and Metastatic Pancreatic Cancer. American Journal of<br>Clinical Pathology, 2004, 121, 226-230.                                                                                                                          | 0.7  | 149       |
| 280 | Large-Scale Allelotype of Pancreaticobiliary Carcinoma Provides Quantitative Estimates of<br>Genome-Wide Allelic Loss. Cancer Research, 2004, 64, 871-875.                                                                                                        | 0.9  | 68        |
| 281 | Telomere Length Abnormalities Occur Early in the Initiation of Epithelial Carcinogenesis. Clinical<br>Cancer Research, 2004, 10, 3317-3326.                                                                                                                       | 7.0  | 292       |
| 282 | Gene expression profiling identifies markers of ampullary adenocarcinoma. Cancer Biology and Therapy, 2004, 3, 651-656.                                                                                                                                           | 3.4  | 35        |
| 283 | Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3089-3094. | 7.1  | 175       |
| 284 | MAP2K4/MKK4 Expression in Pancreatic Cancer. Clinical Cancer Research, 2004, 10, 8516-8520.                                                                                                                                                                       | 7.0  | 65        |
| 285 | Differentially expressed genes in pancreatic ductal adenocarcinomas identified through serial analysis of gene expression. Cancer Biology and Therapy, 2004, 3, 1254-1261.                                                                                        | 3.4  | 73        |
| 286 | Gene Expression Profiling Identifies Genes Associated with Invasive Intraductal Papillary Mucinous<br>Neoplasms of the Pancreas. American Journal of Pathology, 2004, 164, 903-914.                                                                               | 3.8  | 190       |
| 287 | Missense Mutations of MADH4. Clinical Cancer Research, 2004, 10, 1597-1604.                                                                                                                                                                                       | 7.0  | 89        |
| 288 | Pathologically and Biologically Distinct Types of Epithelium in Intraductal Papillary Mucinous<br>Neoplasms. American Journal of Surgical Pathology, 2004, 28, 839-848.                                                                                           | 3.7  | 440       |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | Claudin 4 Protein Expression in Primary and Metastatic Pancreatic Cancer Support for Use as a<br>Therapeutic Target. American Journal of Clinical Pathology, 2004, 121, 226-230.                                                 | 0.7  | 80        |
| 290 | Cathepsin D protein levels in colorectal tumors: divergent expression patterns suggest complex regulation and function. International Journal of Oncology, 2004, 24, 473-85.                                                     | 3.3  | 2         |
| 291 | Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis.<br>Cancer Cell, 2003, 3, 565-576.                                                                                             | 16.8 | 627       |
| 292 | Multicomponent Analysis of the Pancreatic Adenocarcinoma Progression Model Using a Pancreatic<br>Intraepithelial Neoplasia Tissue Microarray. Modern Pathology, 2003, 16, 902-912.                                               | 5.5  | 363       |
| 293 | Exploration of Global Gene Expression Patterns in Pancreatic Adenocarcinoma Using cDNA<br>Microarrays. American Journal of Pathology, 2003, 162, 1151-1162.                                                                      | 3.8  | 450       |
| 294 | Molecular progression of promoter methylation in intraductal papillary mucinous neoplasms (IPMN) of the pancreas. Carcinogenesis, 2003, 24, 193-198.                                                                             | 2.8  | 146       |
| 295 | Gene Expression in Neoplasms of the Pancreas: Applications to Diagnostic Pathology. Advances in<br>Anatomic Pathology, 2003, 10, 125-134.                                                                                        | 4.3  | 13        |
| 296 | Results of Pancreaticoduodenectomy for Lymphoplasmacytic Sclerosing Pancreatitis. Annals of Surgery, 2003, 237, 853-859.                                                                                                         | 4.2  | 178       |
| 297 | Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Research, 2003, 63, 994-9.                                                       | 0.9  | 100       |
| 298 | Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma.<br>Cancer Research, 2003, 63, 4158-66.                                                                                             | 0.9  | 238       |
| 299 | Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Research, 2003, 63, 8614-22.           | 0.9  | 336       |
| 300 | Immunohistochemical Validation of a Novel Epithelial and a Novel Stromal Marker of Pancreatic<br>Ductal Adenocarcinoma Identified by Global Expression Microarrays. American Journal of Clinical<br>Pathology, 2002, 118, 52-59. | 0.7  | 124       |
| 301 | Almost All Infiltrating Colloid Carcinomas of the Pancreas and Periampullary Region Arise From In<br>Situ Papillary Neoplasms. American Journal of Surgical Pathology, 2002, 26, 56-63.                                          | 3.7  | 135       |
| 302 | Discovery of Novel Tumor Markers of Pancreatic Cancer using Global Gene Expression Technology.<br>American Journal of Pathology, 2002, 160, 1239-1249.                                                                           | 3.8  | 271       |
| 303 | Exploring the Host Desmoplastic Response to Pancreatic Carcinoma. American Journal of Pathology, 2002, 160, 91-99.                                                                                                               | 3.8  | 182       |
| 304 | Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas.<br>Gastroenterology, 2002, 123, 365-372.                                                                                        | 1.3  | 124       |
| 305 | Reed-Sternberg-like cells in lymph node aspirates in the absence of Hodgkin's disease: Pathologic significance and differential diagnosis. Diagnostic Cytopathology, 2002, 27, 335-339.                                          | 1.0  | 26        |
| 306 | Pancreatic cancer. Current Problems in Cancer, 2002, 26, 176-275.                                                                                                                                                                | 2.0  | 268       |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Colloid Carcinomas of the Pancreas and Periampullary Region. American Journal of Surgical<br>Pathology, 2002, 26, 952-953.                                                                                                                  | 3.7 | 3         |
| 308 | Colchicine Effect in a Colonic Hyperplastic Polyp. Archives of Pathology and Laboratory Medicine, 2002, 126, 615-617.                                                                                                                       | 2.5 | 12        |
| 309 | The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Research, 2002, 62, 5351-7.                                        | 0.9 | 91        |
| 310 | STK11/LKB1 Peutz-Jeghers Gene Inactivation in Intraductal Papillary-Mucinous Neoplasms of the Pancreas. American Journal of Pathology, 2001, 159, 2017-2022.                                                                                | 3.8 | 251       |
| 311 | Colchicine Toxicity. American Journal of Surgical Pathology, 2001, 25, 1067-1073.                                                                                                                                                           | 3.7 | 150       |
| 312 | Intraductal Papillary Mucinous Neoplasms of the Pancreas: An Increasingly Recognized Clinicopathologic Entity. Annals of Surgery, 2001, 234, 313-322.                                                                                       | 4.2 | 286       |
| 313 | Molecular pathology of pancreatic cancer. Cancer Journal (Sudbury, Mass ), 2001, 7, 251-8.                                                                                                                                                  | 2.0 | 110       |
| 314 | Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas:<br>identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clinical<br>Cancer Research, 2001, 7, 3862-8. | 7.0 | 416       |
| 315 | Dpc4 Protein in Mucinous Cystic Neoplasms of the Pancreas. American Journal of Surgical Pathology, 2000, 24, 1544-1548.                                                                                                                     | 3.7 | 155       |
| 316 | Dpc-4 Protein Is Expressed in Virtually All Human Intraductal Papillary Mucinous Neoplasms of the<br>Pancreas. American Journal of Pathology, 2000, 157, 755-761.                                                                           | 3.8 | 245       |
| 317 | Cathepsin B Activity and Protein Levels in Thyroid Carcinoma, Graves' Disease, and Multinodular<br>Goiters. Thyroid, 1999, 9, 569-577.                                                                                                      | 4.5 | 25        |
| 318 | Cytomegaloviral enterocolitis. Diseases of the Colon and Rectum, 1999, 42, 24-30.                                                                                                                                                           | 1.3 | 102       |
| 319 | Elevations in Cathepsin B Protein Content and Enzyme Activity Occur Independently of Glycosylation during Colorectal Tumor Progression. Journal of Biological Chemistry, 1997, 272, 29190-29199.                                            | 3.4 | 46        |