List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4631912/publications.pdf Version: 2024-02-01

ΔΝΝΑ ΚΑΩΤΤΟΕΝ

#	Article	IF	CITATIONS
1	Uromodulin and its association with urinary metabolites: the German Chronic Kidney Disease Study. Nephrology Dialysis Transplantation, 2023, 38, 70-79.	0.7	3
2	A Predictive Model for Progression of CKD to Kidney Failure Based on Routine Laboratory Tests. American Journal of Kidney Diseases, 2022, 79, 217-230.e1.	1.9	21
3	Trans-ethnic Mendelian-randomization study reveals causal relationships between cardiometabolic factors and chronic kidney disease. International Journal of Epidemiology, 2022, 50, 1995-2010.	1.9	39
4	Meta-GWAS Reveals Novel Genetic Variants Associated with Urinary Excretion of Uromodulin. Journal of the American Society of Nephrology: JASN, 2022, 33, 511-529.	6.1	14
5	Heart-Type Fatty Acid Binding Protein, Cardiovascular Outcomes, and Death: Findings From the German CKD Cohort Study. American Journal of Kidney Diseases, 2022, , .	1.9	0
6	Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 2022, 101, 1126-1141.	5.2	46
7	Genome-wide studies reveal factors associated with circulating uromodulin and its relationships to complex diseases. JCI Insight, 2022, 7, .	5.0	12
8	APOL1 Kidney Risk Variants and Proteomics. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 684-692.	4.5	4
9	The effect of LPA Thr3888Pro on lipoprotein(a) and coronary artery disease is modified by the LPA KIV-2 variant 4925G>A. Atherosclerosis, 2022, 349, 151-159.	0.8	6
10	Prevalence, phenotypic characteristics and prognostic role of apparent treatment resistant hypertension in the German Chronic Kidney Disease (GCKD) study. Journal of Human Hypertension, 2022, , .	2.2	1
11	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	21.4	250
12	DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases. Nature Communications, 2022, 13, 2408.	12.8	26
13	MO048: Genome-wide studies reveal factors associated with circulating uromodulin and its relations with complex diseases. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0
14	Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. Nature Genetics, 2022, 54, 593-602.	21.4	98
15	Cardiovascular disease protein biomarkers are associated with kidney function: The Framingham Heart Study. PLoS ONE, 2022, 17, e0268293.	2.5	2
16	Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies. Kidney International, 2022, 102, 624-639.	5.2	18
17	Thyroid function, renal events and mortality in chronic kidney disease patients: the German Chronic Kidney Disease study. CKJ: Clinical Kidney Journal, 2021, 14, 959-968.	2.9	14
18	A novel mouse model of hyperuricemia expressing a human functional ABCG2 variant. Kidney International, 2021, 99, 12-14.	5.2	4

#	Article	IF	CITATIONS
19	New genetic insights into kidney physiology and disease. Nature Reviews Nephrology, 2021, 17, 85-86.	9.6	2
20	Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline. Kidney International, 2021, 99, 926-939.	5.2	42
21	Spectrum and dosing of urate-lowering drugs in a large cohort of chronic kidney disease patients and their effect on serum urate levels: a cross-sectional analysis from the German Chronic Kidney Disease study. CKJ: Clinical Kidney Journal, 2021, 14, 277-283.	2.9	1
22	Whole genome sequence analyses of eGFR in 23,732 people representing multiple ancestries in the NHLBI trans-omics for precision medicine (TOPMed) consortium. EBioMedicine, 2021, 63, 103157.	6.1	14
23	Rare genetic variants affecting urine metabolite levels link population variation to inborn errors of metabolism. Nature Communications, 2021, 12, 964.	12.8	20
24	Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature, 2021, 590, 290-299.	27.8	1,069
25	Urine Metabolite Levels, Adverse Kidney Outcomes, and Mortality in CKD Patients: A Metabolome-wide Association Study. American Journal of Kidney Diseases, 2021, 78, 669-677.e1.	1.9	22
26	FC 061OSTEOPONTIN AND ITS ASSOCIATION WITH ADVERSE EVENTS IN THE GERMAN CHRONIC KIDNEY DISEASE STUDY. Nephrology Dialysis Transplantation, 2021, 36, .	0.7	0
27	Self-Reported Medication Use and Urinary Drug Metabolites in the German Chronic Kidney Disease (GCKD) Study. Journal of the American Society of Nephrology: JASN, 2021, 32, 2315-2329.	6.1	9
28	Mendelian Randomization Analysis as a Tool to Gain Insights into Causes of Diseases: A Primer. Journal of the American Society of Nephrology: JASN, 2021, 32, 2400-2407.	6.1	32
29	Plasma Proteomics of Renal Function: A Transethnic Meta-Analysis and Mendelian Randomization Study. Journal of the American Society of Nephrology: JASN, 2021, 32, 1747-1763.	6.1	16
30	Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals. Nature Communications, 2021, 12, 4350.	12.8	125
31	Frequent LPA KIV-2 Variants Lower Lipoprotein(a) Concentrations and Protect Against Coronary Artery Disease. Journal of the American College of Cardiology, 2021, 78, 437-449.	2.8	34
32	Genome-wide association study of serum metabolites in the African American Study of Kidney Disease and Hypertension. Kidney International, 2021, 100, 430-439.	5.2	20
33	Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
34	Polygenic Risk Scores for Kidney Function and Their Associations with Circulating Proteome, and Incident Kidney Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 3161-3173.	6.1	27
35	Therapeutic Effects of Inhibition of Sphingosine-1-Phosphate Signaling in HIF-2α Inhibitor-Resistant Clear Cell Renal Cell Carcinoma. Cancers, 2021, 13, 4801.	3.7	6
36	NAT8 Variants, N-Acetylated Amino Acids, and Progression of CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 37-47.	4.5	13

#	Article	IF	CITATIONS
37	Epigenome-wide association study of serum urate reveals insights into urate co-regulation and the SLC2A9 locus. Nature Communications, 2021, 12, 7173.	12.8	8
38	Meta-analyses identify DNA methylation associated with kidney function and damage. Nature Communications, 2021, 12, 7174.	12.8	30
39	Drugs linked to plasma homoarginine in chronic kidney disease patients—a cross-sectional analysis of the German Chronic Kidney Disease cohort. Nephrology Dialysis Transplantation, 2020, 35, 1187-1195.	0.7	4
40	Integration of GWAS Summary Statistics and Gene Expression Reveals Target Cell Types Underlying Kidney Function Traits. Journal of the American Society of Nephrology: JASN, 2020, 31, 2326-2340.	6.1	23
41	The relationship between blood metabolites of the tryptophan pathway and kidney function: a bidirectional Mendelian randomization analysis. Scientific Reports, 2020, 10, 12675.	3.3	26
42	Investigation of a nonsense mutation located in the complex KIV-2 copy number variation region of apolipoprotein(a) in 10,910 individuals. Genome Medicine, 2020, 12, 74.	8.2	19
43	Genome-Wide Association Studies of CKD and Related Traits. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1643-1656.	4.5	28
44	Association of Serum Uromodulin with Death, Cardiovascular Events, and Kidney Failure in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 616-624.	4.5	25
45	GSTM1 Deletion Exaggerates Kidney Injury in Experimental Mouse Models and Confers the Protective Effect of Cruciferous Vegetables in Mice and Humans. Journal of the American Society of Nephrology: JASN, 2020, 31, 102-116.	6.1	28
46	A bidirectional Mendelian randomization study supports causal effects of kidney function onÂbloodÂpressure. Kidney International, 2020, 98, 708-716.	5.2	70
47	Associations of 1,5-Anhydroglucitol and 2-Hour Glucose with Major Clinical Outcomes in the Atherosclerosis Risk in Communities (ARIC) Study. journal of applied laboratory medicine, The, 2020, 5, 1296-1306.	1.3	3
48	The genetic architecture of membranous nephropathy and its potential to improve non-invasive diagnosis. Nature Communications, 2020, 11, 1600.	12.8	120
49	Genetic studies of urinary metabolites illuminate mechanisms of detoxification and excretion in humans. Nature Genetics, 2020, 52, 167-176.	21.4	101
50	The CKDGen Consortium: ten years of insights into the genetic basis of kidney function. Kidney International, 2020, 97, 236-242.	5.2	29
51	Results from the German Chronic Kidney Disease (GCKD) study support association of relative telomere length with mortality in a large cohort of patients with moderate chronic kidney disease. Kidney International, 2020, 98, 488-497.	5.2	16
52	Genetic associations of hemoglobin in children with chronic kidney disease in the PediGFR Consortium. Pediatric Research, 2019, 85, 324-328.	2.3	1
53	Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease. Kidney International, 2019, 96, 480-488.	5.2	53
54	Serum Urate, Genetic Variation, and Prostate Cancer Risk: Atherosclerosis Risk in Communities (ARIC) Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1259-1261.	2.5	5

#	Article	IF	CITATIONS
55	Development of Risk Prediction Equations for Incident Chronic Kidney Disease. JAMA - Journal of the American Medical Association, 2019, 322, 2104.	7.4	124
56	Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nature Communications, 2019, 10, 3842.	12.8	90
57	Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria. Nature Communications, 2019, 10, 4130.	12.8	133
58	Prevalence and Risk Factors of Thyroid Dysfunction in Older Adults in the Community. Scientific Reports, 2019, 9, 13156.	3.3	34
59	A multi-source data integration approach reveals novel associations between metabolites and renal outcomes in the German Chronic Kidney Disease study. Scientific Reports, 2019, 9, 13954.	3.3	15
60	Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nature Genetics, 2019, 51, 1459-1474.	21.4	251
61	Assessment of the Relationship Between Genetic Determinants of Thyroid Function and Atrial Fibrillation. JAMA Cardiology, 2019, 4, 144.	6.1	64
62	Patterns of medication use and the burden of polypharmacy in patients with chronic kidney disease: the German Chronic Kidney Disease study. CKJ: Clinical Kidney Journal, 2019, 12, 663-672.	2.9	82
63	Heritability analysis of nontraditional glycemic biomarkers in the Atherosclerosis Risk in Communities Study. Genetic Epidemiology, 2019, 43, 776-785.	1.3	8
64	A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nature Genetics, 2019, 51, 957-972.	21.4	549
65	A Novel Metabolic Signature To Predict the Requirement of Dialysis or Renal Transplantation in Patients with Chronic Kidney Disease. Journal of Proteome Research, 2019, 18, 1796-1805.	3.7	15
66	Rare variants in SLC5A10 are associated with serum 1,5-anhydroglucitol (1,5-AG) in the Atherosclerosis Risk in Communities (ARIC) Study. Scientific Reports, 2019, 9, 5941.	3.3	9
67	Serum Metabolomic Alterations Associated with Proteinuria in CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 342-353.	4.5	34
68	The DNA methylome in panic disorder: a case-control and longitudinal psychotherapy-epigenetic study. Translational Psychiatry, 2019, 9, 314.	4.8	29
69	Off-target phenotypes in forensic DNA phenotyping and biogeographic ancestry inference: A resource. Forensic Science International: Genetics, 2019, 38, 93-104.	3.1	15
70	Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. Journal of Clinical Investigation, 2019, 130, 335-344.	8.2	54
71	The Dietary Fructose:Vitamin C Intake Ratio Is Associated with Hyperuricemia in African-American Adults. Journal of Nutrition, 2018, 148, 419-426.	2.9	14
72	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	21.4	356

#	Article	IF	CITATIONS
73	Forensic DNA phenotyping legislation cannot be based on "ldeal FDPâ€â€"A response to Caliebe, Krawczak and Kayser (2017). Forensic Science International: Genetics, 2018, 34, e13-e14.	3.1	10
74	Genetics of membranous nephropathy. Nephrology Dialysis Transplantation, 2018, 33, 1493-1502.	0.7	22
75	Control procedures and estimators of the false discovery rate and their application in low-dimensional settings: an empirical investigation. BMC Bioinformatics, 2018, 19, 78.	2.6	20
76	Negative effect of vitamin D on kidney function: a Mendelian randomization study. Nephrology Dialysis Transplantation, 2018, 33, 2139-2145.	0.7	18
77	Predicting timing of clinical outcomes in patientsÂwith chronic kidney disease and severely decreased glomerular filtration rate. Kidney International, 2018, 93, 1442-1451.	5.2	124
78	Genome-Wide Association Studies of Metabolite Concentrations (mGWAS): Relevance for Nephrology. Seminars in Nephrology, 2018, 38, 151-174.	1.6	32
79	Serum metabolomic profile of incident diabetes. Diabetologia, 2018, 61, 1046-1054.	6.3	84
80	Genome-Wide Association Studies of Metabolites in Patients with CKD Identify Multiple Loci and Illuminate Tubular Transport Mechanisms. Journal of the American Society of Nephrology: JASN, 2018, 29, 1513-1524.	6.1	39
81	X-Linked Glomerulopathy Due to COL4A5 FounderÂVariant. American Journal of Kidney Diseases, 2018, 71, 441-445.	1.9	5
82	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.	21.4	1,331
83	Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nature Communications, 2018, 9, 4455.	12.8	181
84	Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels. Nature Communications, 2018, 9, 4228.	12.8	43
85	Genetics of serum urate concentrations and gout in a high-risk population, patients with chronic kidney disease. Scientific Reports, 2018, 8, 13184.	3.3	12
86	Diagnostic Performance of 1,5-Anhydroglucitol Compared to 2-H Glucose in the Atherosclerosis Risk in Communities Study. Clinical Chemistry, 2018, 64, 1536-1537.	3.2	3
87	A novel LMNA nonsense mutation causes two distinct phenotypes of cardiomyopathy with high risk of sudden cardiac death in a large five-generation family. Europace, 2018, 20, 2003-2013.	1.7	12
88	Blood pressure control in chronic kidney disease: A cross-sectional analysis from the German Chronic Kidney Disease (GCKD) study. PLoS ONE, 2018, 13, e0202604.	2.5	20
89	A common pathomechanism in GMAP-210â \in " and LBR-related diseases. JCI Insight, 2018, 3, .	5.0	7
90	Abstract P038: The Association Between Thyroid Function and Cardiac Structure and Function in Older Adults: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation, 2018, 137, .	1.6	0

#	Article	IF	CITATIONS
91	Thyroid function, reduced kidney function and incident chronic kidney disease in a community-based population: the Atherosclerosis Risk in Communities study. Nephrology Dialysis Transplantation, 2017, 32, gfw301.	0.7	33
92	Genetic risk variants for membranous nephropathy: extension of and association with other chronic kidney disease aetiologies. Nephrology Dialysis Transplantation, 2017, 32, 325-332.	0.7	63
93	Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. Lancet, The, 2017, 390, 1888-1917.	13.7	662
94	1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function. Scientific Reports, 2017, 7, 45040.	3.3	98
95	Genome-wide association study of 1,5-anhydroglucitol identifies novel genetic loci linked to glucose metabolism. Scientific Reports, 2017, 7, 2812.	3.3	26
96	Genetic-Variation-Driven Gene-Expression Changes Highlight Genes with Important Functions for Kidney Disease. American Journal of Human Genetics, 2017, 100, 940-953.	6.2	81
97	Thyroid Function, Cardiovascular Risk Factors, and Incident Atherosclerotic Cardiovascular Disease: The Atherosclerosis Risk in Communities (ARIC) Study. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3306-3315.	3.6	50
98	NFAT5 and SLC4A10 Loci Associate with Plasma Osmolality. Journal of the American Society of Nephrology: JASN, 2017, 28, 2311-2321.	6.1	24
99	SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function. Journal of the American Society of Nephrology: JASN, 2017, 28, 981-994.	6.1	39
100	Metabolomic Alterations Associated with Cause of CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1787-1794.	4.5	54
101	Associations between genetic risk variants for kidney diseases and kidney disease etiology. Scientific Reports, 2017, 7, 13944.	3.3	16
102	The Loss of GSTM1 Associates with Kidney Failure and Heart Failure. Journal of the American Society of Nephrology: JASN, 2017, 28, 3345-3352.	6.1	34
103	Epigenome-wide association studies identify DNA methylation associated with kidney function. Nature Communications, 2017, 8, 1286.	12.8	145
104	From Discovery to Translation: Characterization of C-Mannosyltryptophan and Pseudouridine as Markers of Kidney Function. Scientific Reports, 2017, 7, 17400.	3.3	31
105	Genome-Wide Association of Copy Number Polymorphisms and Kidney Function. PLoS ONE, 2017, 12, e0170815.	2.5	3
106	Genetic loci associated with renal function measures and chronic kidney disease in children: the Pediatric Investigation for Genetic Factors Linked with Renal Progression Consortium. Nephrology Dialysis Transplantation, 2016, 31, gfv342.	0.7	35
107	GenToS: Use of Orthologous Gene Information to Prioritize Signals from Human GWAS. PLoS ONE, 2016, 11, e0162466.	2.5	2
108	Combination of mouse models and genomewide association studies highlights novel genes associated with human kidney function. Kidney International, 2016, 90, 764-773.	5.2	11

#	Article	IF	CITATIONS
109	Is High-Density Lipoprotein Cholesterol Causally Related to Kidney Function?. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2252-2258.	2.4	21
110	Insights into kidney diseases from genome-wide association studies. Nature Reviews Nephrology, 2016, 12, 549-562.	9.6	85
111	Mendelian Randomization as an Approach to Assess Causality Using Observational Data. Journal of the American Society of Nephrology: JASN, 2016, 27, 3253-3265.	6.1	639
112	Influence of DNA extraction methods on relative telomere length measurements and its impact on epidemiological studies. Scientific Reports, 2016, 6, 25398.	3.3	42
113	Genetic, Environmental, and Disease-Associated Correlates of Vitamin D Status in Children with CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1145-1153.	4.5	10
114	Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes. Diabetes, 2016, 65, 803-817.	0.6	131
115	Genome-wide association studies in pediatric chronic kidney disease. Pediatric Nephrology, 2016, 31, 1241-1252.	1.7	9
116	Causal Assessment of Serum Urate Levels inÂCardiometabolic Diseases Through a Mendelian Randomization Study. Journal of the American College of Cardiology, 2016, 67, 407-416.	2.8	138
117	Against all odds: blended phenotypes of three single-gene defects. European Journal of Human Genetics, 2016, 24, 1274-1279.	2.8	30
118	Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nature Communications, 2016, 7, 10023.	12.8	412
119	Cout in Older Adults: The Atherosclerosis Risk in Communities Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 536-542.	3.6	22
120	An Empirical Approach to Signature Peptide Choice for Selected Reaction Monitoring: Quantification of Uromodulin in Urine. Clinical Chemistry, 2016, 62, 198-207.	3.2	19
121	A Metabolome-Wide Association Study of Kidney Function and Disease in the General Population. Journal of the American Society of Nephrology: JASN, 2016, 27, 1175-1188.	6.1	159
122	Plasma Urate and Risk of a Hospital Stay with AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 776-783.	4.5	11
123	Genome-Wide Association Studies in Nephrology: Using Known Associations for Data Checks. American Journal of Kidney Diseases, 2015, 65, 217-222.	1.9	8
124	Disease burden and risk profile in referred patients with moderate chronic kidney disease: composition of the German Chronic Kidney Disease (GCKD) cohort. Nephrology Dialysis Transplantation, 2015, 30, 441-451.	0.7	132
125	Prevalence and correlates of gout in a large cohort of patients with chronic kidney disease: the German Chronic Kidney Disease (GCKD) study. Nephrology Dialysis Transplantation, 2015, 30, 613-621.	0.7	85
126	Do telomeres have a higher plasticity than thought? Results from the German Chronic Kidney Disease (GCKD) study as a high-risk population. Experimental Gerontology, 2015, 72, 162-166.	2.8	17

#	Article	IF	CITATIONS
127	Genetic loci for serum magnesium among African-Americans and gene-environment interaction at MUC1 and TRPM6 in European-Americans: the Atherosclerosis Risk in Communities (ARIC) study. BMC Genetics, 2015, 16, 56.	2.7	13
128	Association of relative telomere length with cardiovascular disease in a large chronic kidney disease cohort: The GCKD study. Atherosclerosis, 2015, 242, 529-534.	0.8	27
129	Nephrolithiasis as a Risk Factor for CKD. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 2023-2029.	4.5	25
130	Genome-wide association study of kidney function decline in individuals of European descent. Kidney International, 2015, 87, 1017-1029.	5.2	113
131	Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans. PLoS ONE, 2015, 10, e0119752.	2.5	64
132	Heart Failure in a Cohort of Patients with Chronic Kidney Disease: The GCKD Study. PLoS ONE, 2015, 10, e0122552.	2.5	18
133	Building a network of ADPKD reference centres across Europe: the EuroCYST initiative. Nephrology Dialysis Transplantation, 2014, 29, iv26-iv32.	0.7	11
134	Copy number polymorphisms near SLC2A9 are associated with serum uric acid concentrations. BMC Genetics, 2014, 15, 81.	2.7	16
135	A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Annals of the Rheumatic Diseases, 2013, 72, 701-706.	0.9	47
136	Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nature Genetics, 2013, 45, 145-154.	21.4	675
137	Common Variants in Mendelian Kidney Disease Genes and Their Association with Renal Function. Journal of the American Society of Nephrology: JASN, 2013, 24, 2105-2117.	6.1	33
138	Evolving importance of kidney disease: from subspecialty to global health burden. Lancet, The, 2013, 382, 158-169.	13.7	874
139	Metabolites associate with kidney function decline and incident chronic kidney disease in the general population. Nephrology Dialysis Transplantation, 2013, 28, 2131-2138.	0.7	116
140	Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function. PLoS Genetics, 2012, 8, e1002584.	3.5	166
141	Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function. Human Molecular Genetics, 2012, 21, 5329-5343.	2.9	64
142	The German Chronic Kidney Disease (GCKD) study: design and methods. Nephrology Dialysis Transplantation, 2012, 27, 1454-1460.	0.7	127
143	Serum Metabolite Concentrations and Decreased GFR in the General Population. American Journal of Kidney Diseases, 2012, 60, 197-206.	1.9	108
144	Association of Estimated Glomerular Filtration Rate and Urinary Uromodulin Concentrations with Rare Variants Identified by UMOD Gene Region Sequencing, PLoS ONE, 2012, 7, e38311	2.5	24

#	Article	IF	CITATIONS
145	Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 2011, 478, 103-109.	27.8	1,855
146	Human metabolic individuality in biomedical and pharmaceutical research. Nature, 2011, 477, 54-60.	27.8	916
147	CUBN Is a Gene Locus for Albuminuria. Journal of the American Society of Nephrology: JASN, 2011, 22, 555-570.	6.1	208
148	Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele. Human Molecular Genetics, 2011, 20, 4056-4068.	2.9	101
149	Risk HLA-DQA1 and PLA ₂ R1 Alleles in Idiopathic Membranous Nephropathy. New England Journal of Medicine, 2011, 364, 616-626.	27.0	442
150	Reliability and Sensitivity of the Self-report of Physician-diagnosed Gout in the Campaign Against Cancer and Heart Disease and the Atherosclerosis Risk in the Community Cohorts. Journal of Rheumatology, 2011, 38, 135-141.	2.0	79
151	Genetic Association for Renal Traits among Participants of African Ancestry Reveals New Loci for Renal Function. PLoS Genetics, 2011, 7, e1002264.	3.5	109
152	Association of eGFR-Related Loci Identified by GWAS with Incident CKD and ESRD. PLoS Genetics, 2011, 7, e1002292.	3.5	172
153	Genome-Wide Association Studies in Nephrology Research. American Journal of Kidney Diseases, 2010, 56, 743-758.	1.9	79
154	New loci associated with kidney function and chronic kidney disease. Nature Genetics, 2010, 42, 376-384.	21.4	710
155	Uromodulin Levels Associate with a Common UMOD Variant and Risk for Incident CKD. Journal of the American Society of Nephrology: JASN, 2010, 21, 337-344.	6.1	146
156	Common Variants at 10 Genomic Loci Influence Hemoglobin A1C Levels via Glycemic and Nonglycemic Pathways. Diabetes, 2010, 59, 3229-3239.	0.6	387
157	Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels. PLoS Genetics, 2010, 6, e1001045.	3.5	185
158	Multiple Genetic Loci Influence Serum Urate Levels and Their Relationship With Gout and Cardiovascular Disease Risk Factors. Circulation: Cardiovascular Genetics, 2010, 3, 523-530.	5.1	285
159	Multiple loci associated with indices of renal function and chronic kidney disease. Nature Genetics, 2009, 41, 712-717.	21.4	553
160	Multiple loci influence erythrocyte phenotypes in the CHARGE Consortium. Nature Genetics, 2009, 41, 1191-1198.	21.4	324
161	Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10338-10342.	7.1	562
162	Genome-wide association study for renal traits in the Framingham Heart and Atherosclerosis Risk in Communities Studies. BMC Medical Genetics, 2008, 9, 49.	2.1	31

#	Article	IF	CITATIONS
163	Serum Cystatin C in the United States: The Third National Health and Nutrition Examination Survey (NHANES III). American Journal of Kidney Diseases, 2008, 51, 385-394.	1.9	143
164	Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet, The, 2008, 372, 1953-1961.	13.7	610
165	TCF7L2 Variants Associate with CKD Progression and Renal Function in Population-Based Cohorts. Journal of the American Society of Nephrology: JASN, 2008, 19, 1989-1999.	6.1	43
166	Reduced Kidney Function as a Risk Factor for Incident Heart Failure. Journal of the American Society of Nephrology: JASN, 2007, 18, 1307-1315.	6.1	342
167	Trans-Ethnic Mendelian Randomization Study Reveals Causal Relationships Between Cardiometabolic Factors and Chronic Kidney Disease. SSRN Electronic Journal, 0, , .	0.4	1