
Luigi Nezi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4631616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nature Medicine, 2022, 28, 535-544.	30.7	158
2	TERT promoter mutations and melanoma survival: A comprehensive literature review and meta-analysis. Critical Reviews in Oncology/Hematology, 2021, 160, 103288.	4.4	20
3	Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nature Medicine, 2021, 27, 1432-1441.	30.7	216
4	1072P Primary ipilimumab/nivolumab immunotherapy followed by adjuvant nivolumab in patients with locally advanced or oligometastatic melanoma: Update on outcome. Annals of Oncology, 2021, 32, S889-S890.	1.2	1
5	Short-term treatment with multi-drug regimens combining BRAF/MEK-targeted therapy and immunotherapy results in durable responses in <i>Braf</i> -mutated melanoma. Oncolmmunology, 2021, 10, 1992880.	4.6	7
6	Reporting guidelines for human microbiome research: the STORMS checklist. Nature Medicine, 2021, 27, 1885-1892.	30.7	170
7	Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science, 2021, 374, 1632-1640.	12.6	369
8	A cell-of-origin epigenetic tracer reveals clinically distinct subtypes of high-grade serous ovarian cancer. Genome Medicine, 2020, 12, 94.	8.2	11
9	Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in in in intrapancreatic CD8+ T cells. Journal of Experimental Medicine, 2020, 217, .	8.5	142
10	1147P Primary ipilimumab/nivolumab immunotherapy followed by adjuvant nivolumab in locally advanced or oligometastatic melanoma: Preliminary results. Annals of Oncology, 2020, 31, S765-S766.	1.2	0
11	Fecal Microbiota Transplantation Controls Murine Chronic Intestinal Inflammation by Modulating Immune Cell Functions and Gut Microbiota Composition. Cells, 2019, 8, 517.	4.1	50
12	Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature, 2019, 568, 410-414.	27.8	129
13	Sex Differences in Efficacy and Toxicity of Systemic Cancer Treatments: Role of the Microbiome. Journal of Clinical Oncology, 2019, 37, 439-439.	1.6	16
14	Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science, 2018, 359, 97-103.	12.6	3,126
15	Synthetic vulnerabilities of mesenchymal subpopulations in pancreatic cancer. Nature, 2017, 542, 362-366.	27.8	105
16	Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. Npj Genomic Medicine, 2017, 2, .	3.8	120
17	PAF promotes stemness and radioresistance of glioma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9086-E9095.	7.1	40
18	ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Cancer Cell, 2017, 32, 88-100.e6.	16.8	114

Luigi Nezi

#	Article	IF	CITATIONS
19	InÂVivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer. Cell Reports, 2016, 16, 133-147.	6.4	114
20	Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1296-305.	7.1	59
21	ILF2-YB1 Protein Interaction Modulates RNA Splicing to Induce Resistance to Chemotherapy in High Risk Multiple Myeloma. Blood, 2016, 128, 359-359.	1.4	0
22	Genomic Classification of Cutaneous Melanoma. Cell, 2015, 161, 1681-1696.	28.9	2,562
23	Telomere Dysfunction Drives Aberrant Hematopoietic Differentiation and Myelodysplastic Syndrome. Cancer Cell, 2015, 27, 644-657.	16.8	85
24	Genetic Events That Limit the Efficacy of MEK and RTK Inhibitor Therapies in a Mouse Model of KRAS-Driven Pancreatic Cancer. Cancer Research, 2015, 75, 1091-1101.	0.9	68
25	Abstract 976: Metabolic eradication of treatment resistant cancer stem cells in pancreatic tumors: A clonal tracking-based platform for identifying the best personalized treatment. , 2015, , .		0
26	Abstract 1701: Identification of epigenetic modifiers able to suppress growth of pancreatic ductal adenocarcinoma: A patient-orientedin vivofunctional platform. , 2015, , .		0
27	Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 2014, 514, 628-632.	27.8	998
28	ILF2 Is a Regulator of RNA Splicing and DNA Damage Response in 1q21-Amplified Multiple Myeloma. Blood, 2014, 124, 30-30.	1.4	0
29	Passenger deletions generate therapeutic vulnerabilities in cancer. Nature, 2012, 488, 337-342.	27.8	294
30	Role of the Mad2 Dimerization Interface in the Spindle Assembly Checkpoint Independent of Kinetochores. Current Biology, 2012, 22, 1900-1908.	3.9	26
31	DNA breaks and chromosome pulverization from errors in mitosis. Nature, 2012, 482, 53-58.	27.8	1,051
32	Sister chromatid tension and the spindle assembly checkpoint. Current Opinion in Cell Biology, 2009, 21, 785-795.	5.4	137
33	Protein-tyrosine Phosphatase PTPD1 Regulates Focal Adhesion Kinase Autophosphorylation and Cell Migration. Journal of Biological Chemistry, 2008, 283, 10919-10929.	3.4	64
34	Determinants of conformational dimerization of Mad2 and its inhibition by p31comet. EMBO Journal, 2006, 25, 1273-1284.	7.8	124
35	Accumulation of Mad2–Cdc20 complex during spindle checkpoint activation requires binding of open and closed conformers of Mad2 in Saccharomyces cerevisiae. Journal of Cell Biology, 2006, 174, 39-51.	5.2	51
36	The Mad1/Mad2 Complex as a Template for Mad2 Activation in the Spindle Assembly Checkpoint. Current Biology, 2005, 15, 214-225.	3.9	376

Luigi Nezi

#	Article	IF	CITATIONS
37	Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2. Journal of Cell Science, 2005, 118, 3917-3924.	2.0	61
38	Characterization of DIP1, a novel nuclear protein in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2003, 307, 224-228.	2.1	4
39	The Role of Proteases in Fibronectin Matrix Remodeling in Thyroid Epithelial Cell Monolayer Cultures. Biological Chemistry, 2002, 383, 167-76.	2.5	7