Veerle Kersemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4630880/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orally administered oxygen nanobubbles enhance tumor response to sonodynamic therapy. Nano Select, 2022, 3, 394-401.	3.7	9
2	Imaging PARP with [18F]rucaparib in pancreatic cancer models. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 3668-3678.	6.4	11
3	A System-Agnostic, Adaptable and Extensible Animal Support Cradle System for Cardio-Respiratory-Synchronised, and Other, Multi-Modal Imaging of Small Animals. Tomography, 2021, 7, 39-54.	1.8	1
4	A Model System to Explore the Detection Limits of Antibody-Based Immuno-SPECT Imaging of Exclusively Intranuclear Epitopes. Journal of Nuclear Medicine, 2021, 62, 1537-1544.	5.0	6
5	Olaparib increases the therapeutic index of hemithoracic irradiation compared with hemithoracic irradiation alone in a mouse lung cancer model. British Journal of Cancer, 2021, 124, 1809-1819.	6.4	5
6	The presence of contrast agent increases organ radiation dose in contrast-enhanced CT. European Radiology, 2021, 31, 7540-7549.	4.5	8
7	Potential increase in radiationâ€induced DNA doubleâ€strand breaks with higher doses of iodine contrast during coronary CT angiography. Medical Physics, 2021, 48, 7526-7533.	3.0	3
8	A simple, open and extensible gating Control unit for cardiac and respiratory synchronisation control in small animal MRI and demonstration of its robust performance in steady-state maintained CINE-MRI. Magnetic Resonance Imaging, 2021, 81, 1-9.	1.8	2
9	Combining sonodynamic therapy with chemoradiation for the treatment of pancreatic cancer. Journal of Controlled Release, 2021, 337, 371-377.	9.9	21
10	Manganese-free chow, a refined non-invasive solution to reduce gastrointestinal signal for T1-weighted magnetic resonance imaging of the mouse abdomen. Laboratory Animals, 2020, 54, 353-364.	1.0	1
11	Imaging of translocator protein upregulation is selective for proâ€inflammatory polarized astrocytes and microglia. Glia, 2020, 68, 280-297.	4.9	85
12	lmaging DNA Damage Repair In Vivo After ¹⁷⁷ Lu-DOTATATE Therapy. Journal of Nuclear Medicine, 2020, 61, 743-750.	5.0	33
13	Early Detection in a Mouse Model of Pancreatic Cancer by Imaging DNA Damage Response Signaling. Journal of Nuclear Medicine, 2020, 61, 1006-1013.	5.0	7
14	Enhanced antitumor immunity through sequential targeting of PI3Kl $^{\prime}$ and LAG3. , 2020, 8, e000693.		22
15	Electromagnetically Transparent Graphene Respiratory Sensors for Multimodal Small Animal Imaging. Advanced Healthcare Materials, 2020, 9, 2001222.	7.6	4
16	Radiolabeled cCPE Peptides for SPECT Imaging of Claudin-4 Overexpression in Pancreatic Cancer. Journal of Nuclear Medicine, 2020, 61, 1756-1763.	5.0	13
17	Improved detection of molecularly targeted iron oxide particles in mouse brain using B0 field stabilised high resolution MRI. Magnetic Resonance Imaging, 2020, 67, 101-108.	1.8	4
18	Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics, 2019, 9, 5595-5609.	10.0	37

#	Article	IF	CITATIONS
19	lodine Dose of Administered Contrast Media Affects the Level of Radiation-Induced DNA Damage During Cardiac CT Scans. American Journal of Roentgenology, 2019, 213, 404-409.	2.2	7
20	Tumor Imaging Using Radiolabeled Matrix Metalloproteinase–Activated Anthrax Proteins. Journal of Nuclear Medicine, 2019, 60, 1474-1482.	5.0	6
21	Reduced respiratory motion artefact in constant TR multi-slice MRI of the mouse. Magnetic Resonance Imaging, 2019, 60, 1-6.	1.8	4
22	Dual-isotope imaging allows in vivo immunohistochemistry using radiolabelled antibodies in tumours. Nuclear Medicine and Biology, 2019, 70, 14-22.	0.6	20
23	PET Imaging of PARP Expression Using ¹⁸ F-Olaparib. Journal of Nuclear Medicine, 2019, 60, 504-510.	5.0	69
24	A Carbon-Fiber Sheet Resistor for MR-, CT-, SPECT-, and PET-Compatible Temperature Maintenance in Small Animals. Tomography, 2019, 5, 274-281.	1.8	10
25	Refinement of inÂvivo optical imaging: Development of a real-time respiration monitoring system. Laboratory Animals, 2018, 52, 531-535.	1.0	5
26	¹⁸ F-Trifluoromethylation of Unmodified Peptides with 5- ¹⁸ F-(Trifluoromethyl)dibenzothiophenium Trifluoromethanesulfonate. Journal of the American Chemical Society, 2018, 140, 1572-1575.	13.7	76
27	A DCE-MRI Driven 3-D Reaction-Diffusion Model of Solid Tumor Growth. IEEE Transactions on Medical Imaging, 2018, 37, 724-732.	8.9	37
28	Imaging of Claudin-4 in Pancreatic Ductal Adenocarcinoma Using a Radiolabelled Anti-Claudin-4 Monoclonal Antibody. Molecular Imaging and Biology, 2018, 20, 292-299.	2.6	22
29	Functional Parameters Derived from Magnetic Resonance Imaging Reflect Vascular Morphology in Preclinical Tumors and in Human Liver Metastases. Clinical Cancer Research, 2018, 24, 4694-4704.	7.0	14
30	Prospective gating control for highly efficient cardio-respiratory synchronised short and constant TR MRI in the mouse. Magnetic Resonance Imaging, 2018, 53, 20-27.	1.8	14
31	Imaging of Intracellular Targets. , 2018, , 487-508.		0
32	89Zr-anti-γH2AX-TAT but not 18F-FDG Allows Early Monitoring of Response to Chemotherapy in a Mouse Model of Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2017, 23, 6498-6504.	7.0	20
33	Improved outcome of 131 I-mIBG treatment through combination with external beam radiotherapy in the SK-N-SH mouse model of neuroblastoma. Radiotherapy and Oncology, 2017, 124, 488-495.	0.6	11
34	MRI-guided radiotherapy of the SK-N-SH neuroblastoma xenograft model using a small animal radiation research platform. British Journal of Radiology, 2017, 90, 20160427.	2.2	14
35	An efficient and robust MRI-guided radiotherapy planning approach for targeting abdominal organs and tumours in the mouse. PLoS ONE, 2017, 12, e0176693.	2.5	12
36	An MRI-Compatible High Frequency AC Resistive Heating System for Homeothermic Maintenance in Small Animals. PLoS ONE, 2016, 11, e0164920.	2.5	10

#	Article	IF	CITATIONS
37	A DCE-MRI imaging-based model for simulation of vascular tumour growth. , 2016, 2016, 5949-5952.		1
38	Tumor Growth Estimation via Registration of DCE-MRI Derived Tumor Specific Descriptors. , 2016, , .		0
39	Imaging of Instracellular Targets. Imaging in Medical Diagnosis and Therapy, 2016, , 487-508.	0.0	О
40	Imaging of Cell Trafficking and Cell Tissue Homing. Imaging in Medical Diagnosis and Therapy, 2016, , 509-525.	0.0	0
41	Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect. Oncotarget, 2016, 7, 76613-76627.	1.8	27
42	Cd11b+ myeloid cells support hepatic metastasis through downâ€regulation of angiopoietinâ€like 7 in cancer cells. Hepatology, 2015, 62, 521-533.	7.3	45
43	A dual radiolabelling approach for tracking metal complexes: investigating the speciation of copper bis(thiosemicarbazonates) in vitro and in vivo. Metallomics, 2015, 7, 795-804.	2.4	15
44	Claudin-4 SPECT Imaging Allows Detection of Aplastic Lesions in a Mouse Model of Breast Cancer. Journal of Nuclear Medicine, 2015, 56, 745-751.	5.0	26
45	PET imaging of DNA damage using 89Zr-labelled anti-γH2AX-TAT immunoconjugates. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 1707-1717.	6.4	24
46	A resistive heating system for homeothermic maintenance in small animals. Magnetic Resonance Imaging, 2015, 33, 847-851.	1.8	18
47	Filling Large Discontinuities in 3D Vascular Networks Using Skeleton- and Intensity-Based Information. Lecture Notes in Computer Science, 2015, , 157-164.	1.3	2
48	Acute vascular response to cediranib treatment in human non-small-cell lung cancer xenografts with different tumour stromal architecture. Lung Cancer, 2015, 90, 191-198.	2.0	14
49	Improving In Vivo High-Resolution CT Imaging of the Tumour Vasculature in Xenograft Mouse Models through Reduction of Motion and Bone-Streak Artefacts. PLoS ONE, 2015, 10, e0128537.	2.5	4
50	Imaging DNA Damage Allows Detection of Preneoplasia in the BALB-neuT Model of Breast Cancer. Journal of Nuclear Medicine, 2014, 55, 2026-2031.	5.0	13
51	Anti D20 inhibits T cellâ€mediated pathology and microgliosis in the rat brain. Annals of Clinical and Translational Neurology, 2014, 1, 659-669.	3.7	16
52	Anti-CD20 therapy down-regulates lesion formation and microglial activation in pattern I and pattern II rat models of multiple sclerosis. Journal of Neuroimmunology, 2014, 275, 1-2.	2.3	1
53	A Comparison of the Behavior of ⁶⁴ Cu-Acetate and ⁶⁴ Cu-ATSM In Vitro and In Vivo. Journal of Nuclear Medicine, 2014, 55, 128-134.	5.0	66
54	Glial Activation in the Early Stages of Brain Metastasis: TSPO as a Diagnostic Biomarker. Journal of Nuclear Medicine, 2014, 55, 275-280.	5.0	38

#	Article	IF	CITATIONS
55	Abstract 4929: Radiolabeled cCPE for molecular imaging of tight junction changes during breast oncogenesis. , 2014, , .		1
56	Abstract 1087: Accumulation of CD11b+ Gr1 myeloid cells in liver metastases stimulates tumor growth and angiogenesis. , 2014, , .		0
57	Nanographene oxide-based radioimmunoconstructs for inÂvivo targeting and SPECT imaging of HER2-positive tumors. Biomaterials, 2013, 34, 1146-1154.	11.4	84
58	Subcutaneous tumor volume measurement in the awake, manually restrained mouse using MRI. Journal of Magnetic Resonance Imaging, 2013, 37, 1499-1504.	3.4	40
59	Abstract 1062: Imaging DNA damage response (DDR) during oncogenesis , 2013, , .		0
60	Amplification of DNA damage by a γH2AX-targeted radiopharmaceutical. Nuclear Medicine and Biology, 2012, 39, 1142-1151.	0.6	28
61	111In-BnDTPA-F3: an Auger electron-emitting radiotherapeutic agent that targets nucleolin. EJNMMI Research, 2012, 2, 9.	2.5	24
62	Protease nexin 1 inhibits hedgehog signaling in prostate adenocarcinoma. Journal of Clinical Investigation, 2012, 122, 4025-4036.	8.2	39
63	Abstract 2463: Protease nexin 1 modulates prostate adenocarcinoma by regulating the Hedgehog pathway in humans and mice. , 2012, , .		0
64	Hypoxia Imaging Using PET and SPECT: The Effects of Anesthetic and Carrier Gas on [64Cu]-ATSM, [99mTc]-HL91 and [18F]-FMISO Tumor Hypoxia Accumulation. PLoS ONE, 2011, 6, e25911.	2.5	33
65	ErbB-2 Blockade and Prenyltransferase Inhibition Alter Epidermal Growth Factor and Epidermal Growth Factor Receptor Trafficking and Enhance ¹¹¹ In-DTPA-hEGF Auger Electron Radiation Therapy. Journal of Nuclear Medicine, 2011, 52, 776-783.	5.0	16
66	Micro-CT for Anatomic Referencing in PET and SPECT: Radiation Dose, Biologic Damage, and Image Quality. Journal of Nuclear Medicine, 2011, 52, 1827-1833.	5.0	44
67	lmaging DNA Damage <i>In Vivo</i> Using γH2AX-Targeted Immunoconjugates. Cancer Research, 2011, 71, 4539-4549.	0.9	60
68	Targeting the Tumour: Cell Penetrating Peptides for Molecular Imaging and Radiotherapy. Pharmaceuticals, 2010, 3, 600-620.	3.8	42
69	Editorial [Hot topic:Targeted Molecular Radiotherapy (Guest Editor: Veerle Kersemans)]. Current Drug Discovery Technologies, 2010, 7, 232-232.	1.2	1
70	Pre-clinical evaluation of a 3-nitro-1,2,4-triazole analogue of [18F]FMISO as hypoxia-selective tracer for PET. Nuclear Medicine and Biology, 2010, 37, 565-575.	0.6	31
71	Abstract 5771: Molecular radiation therapy: Targeting DNA damage response proteins. Cancer Research, 2010, 70, 5771-5771.	0.9	1
72	¹¹¹ In-Labeled Immunoconjugates (ICs) Bispecific for the Epidermal Growth Factor Receptor (EGFR) and Cyclin-Dependent Kinase Inhibitor, p27 ^{Kip1} . Cancer Biotherapy and Radiopharmaceuticals, 2009, 24, 163-173.	1.0	13

#	Article	IF	CITATIONS
73	In vivo monitoring of intranuclear p27kip1 protein expression in breast cancer cells during trastuzumab (Herceptin) therapy. Nuclear Medicine and Biology, 2009, 36, 811-819.	0.6	9
74	Properties of [111In]-labeled HIV-1 tat peptide radioimmunoconjugates in tumor-bearing mice following intravenous or intratumoral injection. Nuclear Medicine and Biology, 2008, 35, 101-110.	0.6	18
75	The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of 111In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin). Nuclear Medicine and Biology, 2008, 35, 645-653.	0.6	36
76	The Use of [¹²³ 1]-2-lodo-L-Phenylalanine as an Early Radiotherapy Evaluation Tool: <i>In Vitro</i> R1M Rabdomyosarcoma Cell and <i>In Vivo</i> Mouse Experiments. Cancer Biotherapy and Radiopharmaceuticals, 2008, 23, 192-201.	1.0	2
77	Drug-Resistant AML Cells and Primary AML Specimens Are Killed by ¹¹¹ In-Anti-CD33 Monoclonal Antibodies Modified with Nuclear Localizing Peptide Sequences. Journal of Nuclear Medicine, 2008, 49, 1546-1554.	5.0	50
78	Cell Penetrating Peptides for In Vivo Molecular Imaging Applications. Current Pharmaceutical Design, 2008, 14, 2415-2427.	1.9	62
79	USE OF [¹²³ 1]â€2â€ЮDOâ€ <scp>1</scp> â€PHENYLALANINE AS A TUMOR IMAGING AGENT IN TWC WITH SYNOVIAL CELL SARCOMA. Veterinary Radiology and Ultrasound, 2007, 48, 471-474.	DOGCS	2
80	Comparative biodistribution study of the new tumor tracer [123I]-2-iodo-l-phenylalanine with [123I]-2-iodo-l-tyrosine. Nuclear Medicine and Biology, 2006, 33, 111-117.	0.6	10
81	Influence of sedation and data acquisition method on tracer uptake in animal models: [123I]-2-iodo-l-phenylalanine in pentobarbital-sedated tumor-bearing athymic mice. Nuclear Medicine and Biology, 2006, 33, 119-123.	0.6	3
82	Valine-based biphenylsulphonamide matrix metalloproteinase inhibitors as tumor imaging agents. Applied Radiation and Isotopes, 2006, 64, 677-685.	1.5	13
83	123/125I-labelled 2-iodo-L-phenylalanine and 2-iodo-D-phenylalanine: comparative uptake in various tumour types and biodistribution in mice. European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33, 919-927.	6.4	25
84	Optimization by Experimental Design of Precursor Synthesis and Radiolabeling of 2-Iodo-L-Phenylalanine, a Novel Amino Acid for Tumor Imaging. Cancer Biotherapy and Radiopharmaceuticals, 2006, 21, 235-242.	1.0	2
85	Synthesis, biodistribution and effects of farnesyltransferase inhibitor therapy on tumour uptake in mice of 99mTc labelled epidermal growth factor. Nuclear Medicine Communications, 2005, 26, 147-153.	1.1	15
86	Metal ion modulation of cystinyl aminopeptidase. Biochemical Journal, 2005, 390, 351-357.	3.7	17
87	Comparison between 1â€T MRI and non-MRI based volumetry in inoculated tumours in mice. British Journal of Radiology, 2005, 78, 338-342.	2.2	9
88	Tryptophane-Based Biphenylsulfonamide Matrix Metalloproteinase Inhibitors as Tumor Imaging Agents. Cancer Biotherapy and Radiopharmaceuticals, 2005, 20, 639-647.	1.0	16
89	In vivo evaluation of [1231]-3-(4-iodobenzyl)-1,2,3,4-tetrahydro-8-hydroxychromeno[3,4-c]pyridin-5-one: a presumed dopamine D4 receptor ligand for SPECT studies. Nuclear Medicine and Biology, 2005, 32, 293-299.	0.6	4
90	In vivo apoptosis detection with radioiodinated Annexin V in LoVo tumour-bearing mice following Tipifarnib (Zarnestra, R115777) farnesyltransferase inhibitor therapy. Nuclear Medicine and Biology, 2005, 32, 233-239.	0.6	12

#	Article	IF	CITATIONS
91	In vitro and in vivo evaluation of [123I]-VEGF165 as a potential tumor marker. Nuclear Medicine and Biology, 2005, 32, 431-436.	0.6	28
92	In vivo characterization of 123/125I-2-iodo-L-phenylalanine in an R1M rhabdomyosarcoma athymic mouse model as a potential tumor tracer for SPECT. Journal of Nuclear Medicine, 2005, 46, 532-9.	5.0	16
93	In vivo evaluation and dosimetry of 123I-2-iodo-D-phenylalanine, a new potential tumor-specific tracer for SPECT, in an R1M rhabdomyosarcoma athymic mouse model. Journal of Nuclear Medicine, 2005, 46, 2104-11.	5.0	11
94	Synergistic modulation of cystinyl aminopeptidase by divalent cation chelators. Biochemical Pharmacology, 2004, 68, 893-900.	4.4	21
95	Endogenous cystinyl aminopeptidase in Chinese hamster ovary cells: characterization by [125I]Ang IV binding and catalytic activity. Biochemical Pharmacology, 2004, 68, 885-892.	4.4	43
96	Synthesis, radiosynthesis, and in vitro characterization of [1251]-2- iodo-L-phenylalanine in a R1M rhabdomyosarcoma cell model as a new potential tumor tracer for SPECT. Nuclear Medicine and Biology, 2004, 31, 739-746.	0.6	13
97	Influence of farnesyl transferase inhibitor treatment on epidermal growth factor receptor status. Nuclear Medicine and Biology, 2004, 31, 679-689.	0.6	6
98	Peptide and nonpeptide antagonist interaction with constitutively active human AT1 receptors. Biochemical Pharmacology, 2003, 65, 1329-1338.	4.4	30