Nadia Zaffaroni

List of Publications by Year in descending order

[^0]

2 Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8,

3 | Isolation and <i>In vitro</i> Propagation of Tumorigenic Breast Cancer Cells with Stem/Progenitor |
| :--- |
| Cell Properties. Cancer Research, 2005, 65, 5506-5511. |

Human Bone Marrowâ€"Derived Mesenchymal Stem Cells Do Not Undergo Transformation after 4 Long-term<i>In vitro</i>Culture and Do Not Exhibit Telomere Maintenance Mechanisms. Cancer Research, 2007, 67, 9142-9149.
miR-205 Exerts Tumor-Suppressive Functions in Human Prostate through Down-regulation of Protein
0.9

334
$5 \quad \begin{aligned} & \text { miR-205 Exerts Tumor-Suppressive Functions in Hum } \\ & \text { Kinase Ĉ̂ } \mu \text {. Cancer Research, 2009, 69, 2287-2295. }\end{aligned}$

6 Rational design of shepherdin, a novel anticancer agent. Cancer Cell, 2005, 7, 457-468.
16.8

311
$7 \quad$ Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian
7 cancer. Cellular and Molecular Life Sciences, 2002, 59, 1406-1412.

Survivin as a target for new anticancer interventions. Journal of Cellular and Molecular Medicine,
2005, 9, 360-372.
3.6

227
$9 \quad$ Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis, 2007, 28,
1133-1139.
2.8

217

10 miR-21: an oncomir on strike in prostate cancer. Molecular Cancer, 2010, 9, 12.
19.2

189

11 Sunitinib in advanced alveolar soft part sarcoma: evidence of a direct antitumor effect. Annals of
 Oncology, 2011, 22, 1682-1690.

1.2185

12 Survivin expression and resistance to anticancer treatments: perspectives for new therapeutic interventions. Drug Resistance Updates, 2002, 5, 65-72.
14.4

177

> 13 TNF-Related Apoptosis-Inducing Ligand (TRAIL)â€"Armed Exosomes Deliver Proapoptotic Signals to Tumor
> Site. Clinical Cancer Research, 2016, 22, 3499-3512.
7.0

158

14 Targeting survivin in cancer therapy. Expert Opinion on Therapeutic Targets, 2008, 12, 463-476.
3.4

154

15 Pazopanib in advanced and platinum-resistant urothelial cancer: an open-label, single group, phase 2
10.7

130 15 trial. Lancet Oncology, The, 2012, 13, 810-816.

Breast cancer stem cells: An overview. European Journal of Cancer, 2006, 42, 1219-1224.
2.8

126

[^1]3.8

125
Photochemical Internalization: A New Tool for Drug Delivery. Current Pharmaceutical
Biotechnology, 2007, 8, 362-372.

Telomere Maintenance Mechanisms in Liposarcomas: Association with Histologic Subtypes and Disease Progression. Cancer Research, 2006, 66, 8918-8924.
Haematologica, 2009, 94, 1649-1660.

22 Senescent stroma promotes prostate cancer progression: The role of miRâ $\in 210$. Molecular Oncology,
Redox-Active Polymer Microcapsules for the Delivery of a Survivin-Specific siRNA in Prostate Cancer
Cells. ACS Nano, 2011,5, 1335-1344.

$24 \quad$| Hybrid ligandâ€"alkylating agents targeting telomeric G-quadruplex structures. Organic and |
| :--- |
| Biomolecular Chemistry, 2012, 10, 2798. |

Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced
apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene, 2004,
$23,386-394$.

25

26 Characterization of novel antisense HIF-1 $1 \pm$ transcripts in human cancers. Cell Cycle, 2011, 10, 3189-3197.
$2.6 \quad 92$

```
27 Novel PVA-Based Hydrogel Microparticles for Doxorubicin Delivery. Biomacromolecules, 2008, 9,
27 1967-1973.
```

5.4

91

Novel $1<\mathrm{i}\rangle \mathrm{H}<|\mathrm{i}\rangle-\mathrm{Py}$ rrolo[2,3-<i>b</i>]pyridine Derivative Nortopsentin Analogues: Synthesis and
28 Antitumor Activity in Peritoneal Mesothelioma Experimental Models. Journal of Medicinal Chemistry,
6.4

91 2013, 56, 7060-7072.

$$
\begin{align*}
& \text { Radiosensitization of Human Melanoma Cells by Ribozyme-Mediated Inhibition of Survivin Expression. } \\
& \text { Journal of Investigative Dermatology, 2003, 120, 648-654. }
\end{align*}
$$

37

> miR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death and Differentiation, $2012,19,1750-1760$.
11.2

77

Targeting Loop Adenines in Gâ€Quadruplex by a Selective Oxirane. Chemistry - A European Journal, 2013, 19, 78-81.
3.3

77

Antitumor efficacy of the heparanase inhibitor SSTOOO1 alone and in combination with antiangiogenic
39 agents in the treatment of human pediatric sarcoma models. Biochemical Pharmacology, 2013, 85,
$4.4 \quad 75$ 1424-1432.
$40 \quad$ Camptothecin Resistance in Cancer: Insights into the Molecular Mechanisms of a DNA-Damaging Drug. Current Medicinal Chemistry, 2013, 20, 1541-1565.
$2.4 \quad 75$
Pathophysiology and biology of peritoneal carcinomatosis. World Journal of Gastrointestinal
Oncology, 2010, 2, 12.

Potentiation of paclitaxel-induced apoptosis by the novel cyclin-dependent kinase inhibitor NU6140: a
possible role for survivin down-regulation. Molecular Cancer Therapeutics, 2005, 4, 1328-1337.

> Silencing of survivin gene by small interfering RNAs produces supra-additive growth suppression in combination with 17-allylamino-17-demethoxygeldanamycin in human prostate cancer cells. Molecular Cancer Therapeutics, 2006, 5, 179-186.

44 Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to
cisplatin-induced apoptosis. Journal of Clinical Investigation, 2002, 109, 285-286.
8.2

73

```
45 Tethering Functional Ligands onto Shell of Ultrasound Active Polymeric Microbubbles.
Biomacromolecules, 2006, 7, 604-611.
```

Inhibition of Telomerase Activity by a Hammerhead Ribozyme Targeting the RNA Component of
46 Telomerase in Human Melanoma Cells. Journal of Investigative Dermatology, 2000, 114, 259-267.
0.7

68

47	Synthesis and Biological Evaluation (in Vitro and in Vivo) of Cyclic Arginineâ€ "Clycineâ€"Aspartate (RCD) Peptidomimeticấ"Paclitaxel Conjugates Targeting Integrin $\hat{I} \pm$ <sub $\rangle \hat{V}<\mid$ sub $\rangle^{2}<$ sub $>3<\mid$ sub \rangle. Journal of Medicinal Chemistry, 2012, 55, 10460-10474.	6.4	68
48	Dacarbazine in Solitary Fibrous Tumor: A Case Series Analysis and Preclinical Evidence vis-Ã-vis Temozolomide and Antiangiogenics. Clinical Cancer Research, 2013, 19, 5192-5201.	7.0	67

Emerging Role of G-quadruplex DNA as Target in Anticancer Therapy. Current Pharmaceutical Design,
$2017,22,6612-6624$.
Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed
3.3
65

A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT
51 regulatory network and suggests a mesenchymal stem cell origin for ALT. Oncogene, 2009, 28,
5.9

64
3765-3774.
miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair

Expression of P-glycoprotein and in vitro or in vivo resistance to doxorubicin and cisplatin in breast
and ovarian cancers. European Journal of Cancer, 1994, 30, 1002-1007.

XPO1/CRM1-Selective Inhibitors of Nuclear Export (SINE) reduce tumor spreading and improve overall
56 survival in preclinical models of prostate cancer (PCa). Journal of Hematology and Oncology, 2014, 7,
46.
Ribozyme-mediated down-regulation of survivin expression sensitizes human melanoma cells to
topotecan in vitro and in vivo. Carcinogenesis, 2004, 25, 1129-1136.

$58 \quad$| A Computational Assay of Estrogen Receptor $̂$ Î \pm Antagonists Reveals the Key Common Structural Traits |
| :--- |
| of Drugs Effectively Fighting Refractory Breast Cancers. Scientific Reports, 2018, 8, 649. |

2.8

A Computational Assay of Estrogen Receptor $\hat{l} \pm$ Antagonists Reveals the Key Common Structural Traits Drugs Effectively Fighting Refractory Breast Cancers. Scientic Reports, 2018, 8, 649.
3.3

57

59 Role of FoxO Proteins in Cellular Response to Antitumor Agents. Cancers, 2019, 11, 90.
$3.7 \quad 56$
To Bleed or Not to Bleed. A Prediction Based on Individual Gene Profiling Combined With 60 Doseâ€"Volume Histogram Shapes in Prostate Cancer Patients Undergoing Three-Dimensiona Conformal Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2009, 74,
61 Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a
prominent role for interleukin-6 in fibroblast activation. Oncotarget, 2015, 6, 31441-31460.
$1.8 \quad 55$

62 Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Research, 2003, 63, 3490-4.
0.9

55Molecular Medicine, 2009, 15, 381-390.
63 Towards the definition of prostate cancer-related microRNAs: where are we now?. Trends in$6.7 \quad 54$$64 \quad \begin{aligned} & \text { Naphthalene diimides as red fluorescent pH sen } \\ & \text { Biomolecular Chemistry, 2015, 13, 570-576. }\end{aligned}$
Synergistic Antitumor Effects of Novel HDAC Inhibitors and Paclitaxel In Vitro and In Vivo. PLoS ONE,
65 2011, 6, e29085.
54

 663.253A New Avenue toward Androgen Receptor Pan-antagonists: C2 Sterically Hindered Substitution of6.453Hydroxy-propanamides. Journal of Medicinal Chemistry, 2014, 57, 7263-7279.

Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy, 2012, 8, 1185-1196.
73
74

Synthesis and Antiproliferative Activity of Substituted 3[2-(1H-indol-3-yl)-
73 1,3-thiazol-4-yl]-1H-pyrrolo[3,2-b]pyridines, Marine Alkaloid Nortopsentin Analogues. Current
2.4

50
Medicinal Chemistry, 2014, 21, 1654-1666.
Role of proliferation in HER2 status predicted response to doxorubicin. International Journal of
5.1

49
Cancer, 2003, 105, 568-573.

Targeted doxorubicin delivery by chitosan-galactosylated modified polymer microbubbles to
hepatocarcinoma cells. Colloids and Surfaces B: Biointerfaces, 2013, 110, 434-442.
5.0

Evidence for alternative lengthening of telomeres in liposarcomas in the absence of ALTâ€associated
76 PML bodies. International Journal of Cancer, 2008, 122, 2414-2421.
$5.1 \quad 47$
47

Apollon gene silencing induces apoptosis in breast cancer cells through p53 stabilisation and
caspase-3 activation. British Journal of Cancer, 2009, 100, 739-746.
$6.4 \quad 47$

78
The 6â€year attendance of a multidisciplinary prostate cancer clinic in Italy: incidence of management
changes. BJU International, 2012, 110, 998-1003.
2.5

47
79
80

Modulation of Sensitivity to Antitumor Agents by Targeting the MAPK Survival Pathway. Current
Pharmaceutical Design, 2013, 19, 883-894.
$1.9 \quad 47$

New mechanisms for old drugs: Insights into DNA-unrelated effects of platinum compounds and drug resistance determinants. Drug Resistance Updates, 2015, 20, 1-11.
$14.4 \quad 47$

> 81 Inactivation of Ret/Ptc1 oncoprotein and inhibition of papillary thyroid carcinoma cell proliferation
> by indolinone RPI-1. Cellular and Molecular Life Sciences, 2003, 60, 1449-1459.

Down-regulation of human telomerase reverse transcriptase through specific activation of RNAi
82 pathway quickly results in cancer cell growth impairment. Biochemical Pharmacology, 2007, 73, 1703-1714.

83 Telomeres as targets for anticancer therapies. Expert Opinion on Therapeutic Targets, 2011, 15, 579-593.
$3.4 \quad 45$

84 On the Road to Fight Cancer: The Potential of G-Quadruplex Ligands as Novel Therapeutic Agents. International Journal of Molecular Sciences, 2021, 22, 5947.
4.1

45
$5.4 \quad 45$

85 Hyperthermia and hypoxia: new developments in anticancer chemotherapy. European Journal of
$1.0 \quad 44$
Surgical Oncology, 2001, 27, 340-342.

1,4-Substituted Triazoles as Nonsteroidal Anti-Androgens for Prostate Cancer Treatment. Journal of Medicinal Chemistry, 2017, 60, 3082-3093.
6.4

44

LEADeR role of miR-205 host gene as long noncoding RNA in prostate basal cell differentiation. Nature
12.8

44

Enhancement of cisplatin activity by lonidamine in human ovarian cancer cells. International Journal

A new indole-3-carbinol tetrameric derivative inhibits cyclin-dependent kinase 6 expression, and
91 induces G1 cell cycle arrest in both estrogen-dependent and estrogen-independent breast cancer cell
0.9
lines. Cancer Research, 2003, 63, 4028-36.
Synthesis, spectroscopy (IR, multinuclear NMR, ESI-MS), diffraction, density functional study and in
92 vitro antiproliferative activity of pyrazole-beta-diketone dihalotin(IV) compounds on 5 melanoma cell lines. Journal of Inorganic Biochemistry, 2006, 100, 58-69.

93 Design, modeling, synthesis and biological activity evaluation of camptothecin-linked platinum anticancer agents. European Journal of Medicinal Chemistry, 2013, 63, 387-400.
5.5
microRNAs as players and signals in the metastatic cascade: Implications for the development of novel anti-metastatic therapies. Seminars in Cancer Biology, 2017, 44, 132-140.
9.6

Targeting Heparan Sulfate Proteoglycans and their Modifying Enzymes to Enhance Anticancer
95 Chemotherapy Efficacy and Overcome Drug Resistance. Current Medicinal Chemistry, 2017, 24,
$2.4 \quad 42$
2860-2886.

96 Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma.
EBioMedicine, 2019, 39, 215-225.

Induction of Endoplasmic Reticulum Stress Response by the Indole-3-Carbinol Cyclic Tetrameric
Derivative CTet in Human Breast Cancer Cell Lines. PLoS ONE, 2012, 7, e43249.
2.5

41

Mitochondria are primary targets in apoptosis induced by the mixed phosphine gold species
98 chlorotriphenylphosphine-1,3-bis(diphenylphosphino) propanegold(I) in melanoma cell lines.
Biochemical Pharmacology, 2007, 73, 773-781.
miRNAs in tumor radiation response: bystanders or participants?. Trends in Molecular Medicine, 2014,
20, 529-539.

HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the growth of human aggressive B-cell non-Hodgkin lymphoma. Blood, 2015, 125, 1768-1771.

Preclinical Activity of New [1,2]Oxazolo[5,4-<i>e</i>]isoindole Derivatives in Diffuse Malignant
Peritoneal Mesothelioma. Journal of Medicinal Chemistry, 2016, 59, 7223-7238.
Antitumor activity of miR-34a in peritoneal mesothelioma relies on c-MET and AXL inhibition: persistent
102 activation of ERK and AKT signaling as a possible cytoprotective mechanism. Journal of Hematology and Oncology, 2017, 10, 19.

103 Inhibition of telomerase activity by a distamycin derivative: effects on cell proliferation and induction of apoptosis in human cancer cells. European Journal of Cancer, 2002, 38, 1792-1801.

Anti-tumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin. Oncotarget, 2015, 6, 13119-13132.

Cell growth inhibition, G2M cell cycle arrest and apoptosis induced by the imidazoacridinone C1311 in
human tumour cell lines. European Journal of Cancer, 2001, 37, 1953-1962.
2.8

Dimerizable Redox-Sensitive Triazine-Based Cationic Lipids for inâ€...vitro Gene Delivery. ChemMedChem,
2007, 2, 292-296.
3.2

38

106

Redox-Sensitive PEGâ€"Polypeptide Nanoporous Particles for Survivin Silencing in Prostate Cancer
Cells. Biomacromolecules, 2015, 16, 2168-2178.
5.4

38

The indole-3-carbinol cyclic tetrameric derivative CTet inhibits cell proliferation via overexpression
112 of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines. Breast Cancer Research, 2011, 13, R33.

113 Targeting DNA Topoisomerase I with Non-Camptothecin Poisons. Current Medicinal Chemistry, 2012, 19,
2.4

1238-1257.
36

Role of tyrosyl-DNA phosphodiesterase 1 and inter-players in regulation of tumor cell sensitivity to topoisomerase I inhibition. Biochemical Pharmacology, 2012, 83, 27-36.
115 Survivin is Highly Expressed and Promotes Cell Survival in Malignant Peritoneal Mesothelioma. Analytical Cellular Pathology, 2007, 29, 453-466.

116 Lack of a correlation between micronucleus formation and radiosensitivity in established and primary

 cultures of human tumours. British Journal of Cancer, 1994, 70, 1112-1117.117 Novel Insights into Targeting ATP-Binding Cassette Transporters for Antitumor Therapy. Current Medicinal Chemistry, 2011, 18, 4237-4249.
1.435
6.4

34

FoxO-1 contributes to the efficacy of the combination of the XPO1 inhibitor selinexor and cisplatin in
4.4

34

Rational design of allosteric modulators of the aromatase enzyme: AnÂunprecedented therapeutic strategy to fight breast cancer. European Journal of Medicinal Chemistry, 2019, 168, 253-262.
5.5

Transcription and alternative splicing of telomerase reverse transcriptase in benign and malignant
124 breast tumours and in adjacent mammary glandular tissues: implications for telomerase activity.

Role of the Receptor Tyrosine Kinase Axl and its Targeting in Cancer Cells. Current Medicinal
Chemistry, 2016, 23, 1496-15 12 .

Targeting Telomerase by Antisense-Based Approaches: Perspectives for New Anti-Cancer Therapies. Current Pharmaceutical Design, 2005, 11, 1105-1117.

Prognostic relevance of ALT-associated markers in liposarcoma: a comparative analysis. BMC Cancer, 2010, 10, 254.
2.6

Receptor tyrosine kinase and downstream signalling analysis in diffuse malignant peritonealgene product immunophenotyping. Journal of Pathology, 2003, 201, 127-133.
133 Oligomer-mediated modulation of hTERT alternative splicing induces telomerase inhibition and cell growth decline in human prostate cancer cells. Cellular and Molecular Life Sciences, 2004, 61, 1764-74.
135 Feasibility and safety of adoptive immunotherapy with ex vivo-generated autologous, cytotoxic T
lymphocytes in patients with solid tumor. Cytotherapy, 2012, 14, 80-90.0.729
The curative efficacy of namitecan (ST1968) in preclinical models of pediatric sarcoma is associated
5.1

29
Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate
139 transporter, and preclinical activity of new anti-LDH-A compounds. British Journal of Cancer, 2020,
6.4
29
123, 644-656.

140 The Role of Alternative Lengthening of Telomeres Mechanism in Cancer: Translational and Therapeutic
145 Down-Regulation of the Androgen Receptor by G-Quadruplex Ligands Sensitizes Castration-Resistant Prostate Cancer Cells to Enzalutamide. Journal of Medicinal Chemistry, 2018, 61, 8625-8638.
Activity of a trinuclear platinum complex in human ovarian cancer cell lines sensitive and resistant to
146 cisplatin: cytotoxicity and induction and gene-specific repair of DNA lesions. British Journal of
Cancer, 2001, 84, 1387-1390.
Effects of a novel trinuclear platinum complex in cisplatin-sensitive and cisplatin-resistant human
147 ovarian cancer cell lines: interference with cell cycle progression and induction of apoptosis.
European Journal of Cancer, 2001, 37, 649-659.
148 Biomolecular markers of outcome prediction in prostate cancer. Cancer, 2009, 115, 3058-3067.

149	Scoring of senescence signalling in multiple human tumour gene expression datasets, identification of a correlation between senescence score and drug toxicity in the NCI60 panel and a pro-inflammatory signature correlating with survival advantage in peritoneal mesothelioma. BMC Genomics. 2010. 11. 532.	2.8	27
150	Role of Apollon in Human Melanoma Resistance to Antitumor Agents That Activate the Intrinsic or the Extrinsic Apoptosis Pathways. Clinical Cancer Research, 2012, 18, 3316-3327.	7.0	27
151	Improved Apoptotic Cell Death in Drug-Resistant Nonâ€"Small-Cell Lung Cancer Cells by Tumor Necro Factorâ̂́"Related Apoptosis-Inducing Ligandâe" Based Treatment. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 360-371.	2.5	26

152 Differential outcome of MEK1/2 inhibitor-platinum combinations in platinum-sensitive and -resistant ovarian carcinoma cells. Cancer Letters, 2014, 347, 212-224.

Patient-derived solitary fibrous tumour xenografts predict high sensitivity to
153 doxorubicin/dacarbazine combination confirmed in the clinic and highlight the potential
153 effectiveness of trabectedin or eribulin against this tumour. European Journal of Cancer, 2017, 76, 84-92.
154 Telomerase Activity in Benign and Malignant Breast Lesions: a Pilot Prospective Study on Fine-Needle Aspirates. Journal of the National Cancer Institute, 1998, 90, 537-539.
High level of telomerase RNA gene expression is associated with chromatin modification, the ALT
phenotype and poor prognosis in liposarcoma. British Journal of Cancer, 2008, 98, 1467-1474. phenotype and poor prognosis in liposarcoma. British Journal of Cancer, 2008, 98, 1467-1474.
6.4

28
6.4

27
$2.8 \quad 27$
4.1

27
7.2

26
2.8
6.3

25
$6.4 \quad 25$

The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas.
$7.2 \quad 25$
156 Cancer Letters, 2016, 382, 245-254.
5

Emerging role of microRNAs in prostate cancer: implications for personalized medicine. Discovery
$\begin{array}{ll}0.5 & 25\end{array}$
Medicine, 2010, 9, 212-8.
0.5

25

Reliability of anin vitro short-term assay to predict the drug sensitivity of human breast cancer.
4.1

24
Cancer, 1985, 56, 450-456.

$$
159 \begin{aligned}
& \text { Ribozyme-mediated inhibition of PKC? sensitizes androgen-independent human prostate cancer cells to } \\
& \text { cisplatin-induced apoptosis. Prostate, 2003, 54, 133-143. } \\
& \text { Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting } \\
& 160 \quad \begin{array}{l}
\text { human telomerase reverse transcriptase: effects on telomere status and proliferative potential of }
\end{array}
\end{aligned}
$$

2.3

24
5.3

24 human prostate cancer cells. Cell Proliferation, 2007, 40, 905-920.

161 Multiple effects of the $\mathrm{Na}+/ \mathrm{H}+$ antiporter inhibitor HMA on cancer cells. Apoptosis: an International
Journal on Programmed Cell Death, 2013, 18, 1586-1598.
4.9

24
163 Î'â€T ocotrienol sensitizes and reâ€sensitizes ovarian cancer cells to cisplatin via induction of Gl phase cell cycle arrest and ROS/MAPKâ€mediated apoptosis. Cell Proliferation, 2021, 54, e13111.
5.3

24164 Nanoparticles for Ferroptosis Therapy in Cancer. Pharmaceutics, 2021, 13, 1785.

165 Synergistic Cooperation Between Sunitinib and Cisplatin Promotes Apoptotic Cell Death in Human Medullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 498-509.
$166 \quad[1,2]$ Oxazolo[5,4-e]isoindoles as promising tubulin polymerization inhibitors. European Journal of Medicinal Chemistry, 2016, 124, 840-851.
miR-380-5p-mediated repression of TEP1 and TSPYL5 interferes with telomerase activity and favours the
167 emergence of an â€œALT-likeâ€ophenotype in diffuse malignant peritoneal mesothelioma cells. Journal of
$17.0 \quad 23$ Hematology and Oncology, 2017, 10, 140.
168 melphalan in primary cultures of human malignant melanoma. International Journal of Hyperthermia,
$2.5 \quad 22$ 1992, 8, 341-349.

169 | Design, synthesis and biological evaluation of novel dimeric and tetrameric cRGDâ€ "paclitaxel |
| :--- |
| conjugates for integrin-assisted drug delivery. Organic and Biomolecular Chemistry, 2015, 13, 7530-7541. |

170 Targeting the invasive phenotype of cisplatin-resistant Non-Small Cell Lung Cancer cells by a novel histone deacetylase inhibitor. Biochemical Pharmacology, 2015, 94, 79-90.
$4.4 \quad 22$

171 Dissecting the role of microRNAs in prostate cancer metastasis: implications for the design of novel

 therapeutic approaches. Cellular and Molecular Life Sciences, 2016, 73, 2531-2542.$5.4 \quad 22$
Targeting of <i> RET</i> oncogene by naphthalene diimide-mediated gene promoter G-quadruplex
stabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer.
Oncotarget, 2016, 7, 49649-49663.

172 stabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer. Oncotarget, 2016, 7, 49649-49663.

Experience with peritoneal mesothelioma at the Milan National Cancer Institute. World Journal of	2.0
Gastrointestinal Oncology, 2010, 2, 76.	

174 Application of anin vitro antimetabolic assay to human germ cell testicular tumors for the preclinical evaluation of drug sensitivity. Cancer, 1986, 58, 1441-1447.
$4.1 \quad 21$
175 Targetin g Human Tel omerase by Antisens e Oligonucleotides and Ribozymes. Anti-Cancer Agents in
$\begin{array}{ll}7.0 & 21\end{array}$
Medicinal Chemistry, 2002, 2, 605-612.

Telomere maintenance mechanisms in malignant peripheral nerve sheath tumors: expression and prognostic relevance. Neuro-Oncology, 2012, 14, 736-744.
1.2

21

Comparative Assessment of Antitumor Effects and Autophagy Induction as a Resistance Mechanism by
177 Cytotoxics and EZH2 Inhibition in INI1-Negative Epithelioid Sarcoma Patient-Derived Xenograft. 3.7

| |
| :--- | :--- |

Cancers, 2019, 11, 1015.
Resveratrol and Prostate Cancer: The Power of Phytochemicals. Current Medicinal Chemistry, 2021, 28, 4845-4862.
2.4

21

$$
\begin{aligned}
& 179 \text { Antiâ€tumor activity of CpGâ€ODN aerosol in mouse lung metastases. International Journal of Cancer, } \\
& 2013,133,383-393 \text {. }
\end{aligned}
$$

5.1

20
Eleven-year Management of Prostate Cancer Patients on Active Surveillance: What have We Learned?.
Tumori, 2017, 103, 464-474.
1.1

182 miR-342 overexpression results in a synthetic lethal phenotype in <i>BRCAl </i>-mutant HCC1937 breast cancer cells. Oncotarget, 2016, 7, 18594-18604.
183 Lack of a correlation between p53 protein expression and radiation response in human tumor primary
3.2 cultures. Stem Cells, 1995, 13, 77-85.

19

Involvement of $\mathrm{bcl}-2$ and p21waf1 proteins in response of human breast cancer cell clones to Tomudex.
184 British Journal of Cancer, 1999, 81, 252-260.
6.4

19
Androgen Receptor-Directed Molecular Conjugates for Targeting Prostate Cancer. Frontiers in
Chemistry, 2019, 7, 369.

185 Androgen Receptor-Directed Molecular Conjugates for Targeting Prostate Cancer. Frontiers in Chemistry, 2019, 7, 369.

9

186 High efficacy of CpG-ODN, Cetuximab and Cisplatin combination for very advanced ovarian xenograft tumors. Journal of Translational Medicine, 2013, 11, 25.
4.4

18

$$
\begin{aligned}
& 187 \text { Pleiotropic antitumor effects of the panâ€HDAC inhibitor ITF2357 against câ€Mycâ€overexpres: } \\
& \text { Bâ€cell nonâ€Hodgkin lymphomas. International Journal of Cancer, 2014, 135, 2034-2045. } \\
& 188 \quad \begin{array}{l}
\text { Targeting Orthosteric and Allosteric Pockets of Aromatase via Dual-Mode Novel Azole Inhibitors. } \\
\text { Medicinal Chemistry Letters, 2020, 11, 732-739. }
\end{array} \\
& 189 \text { Necroptosis and Prostate Cancer: Molecular Mechanisms and Therapeutic Potential. Cells, } 2022 \\
& 1221 .
\end{aligned} \begin{aligned}
& \text { Antitumor activity of hyperthermia alone or in combination with cisplatin and melphalan in prim } \\
& \text { cultures of human malignant melanoma. International Journal of Cell Cloning, 1989, 7, 385-394. } \\
& 191 \text { Validation of Telomerase and Survivin as Anticancer Therapeutic Targets Using Ribozymes and } \\
& \text { Small-Interfering RNAs. , 2007, 361, 239-264. }
\end{aligned}
$$

Remarkable interference with telomeric function by a G-quadruplex selective bisantrene regioisomer.
192 Biochemical Pharmacology, 2010, 79, 1781-1790.
4.4

17

193 Antitumor Activity of a Novel Homodimeric SMAC Mimetic in Ovarian Carcinoma. Molecular
Pharmaceutics, 2014, 11, 283-293.

CpG-oligodeoxynucleotides exert remarkable antitumor activity against diffuse malignant peritoneal mesothelioma orthotopic xenografts. Journal of Translational Medicine, 2016, 14, 25.
$4.4 \quad 17$

Plantâ€Derived Stilbenoids as DNAâ€Binding Agents: From Monomers to Dimers. Chemistry - A European Journal, 2021, 27, 8832-8845.
3.3

17

PLK1 is a critical determinant of tumor cell sensitivity to CPT11 and its inhibition enhances the drug
196 antitumor efficacy in squamous cell carcinoma models sensitive and resistant to camptothecins.
1.8

17
Oncotarget, 2015, 6, 8736-8749.
Preclinical and clinical evaluation of four gemcitabine plus carboplatin schedules as front-line
1.2201 Epithelioid peritoneal mesothelioma: a hybrid phenotype within a$1.8 \quad 16$mesenchymal-epithelial/epithelial-mesenchymal transition framework. Oncotarget, 2016, 7, 75503-75517.16Drug Combinations with Proteasome Inhibitors in Antitumor Therapy. Current Pharmaceutical Design,
202 2013, 19, 4094-4114.Effect of ionizing radiation on cell-cycle progression and cyclin B1 expression in human melanomacells. , 1996, 66, 104-109.Telomere maintenance in wilms tumors: First evidence for the presence of alternative lengthening oftelomeres mechanism. Genes Chromosomes and Cancer, 2011, 50, 823-829.
205 Microenvironment modulation and enhancement of antilymphoma therapy by the heparanase inhibitor roneparstat. Hematological Oncology, 2018, 36, 360-362.[18F]FDG and [18F]FLT PET for the evaluation of response to neo-adjuvant chemotherapy in a model oftriple negative breast cancer. PLoS ONE, 2018, 13, e0197754.2.515
207 Anaplastic lymphoma kinase aberrations correlate with metastatic features in pediatricrhabdomyosarcoma. Oncotarget, 2016, 7, 58903-58914.
209 In vitro cytotoxic activity of taxol' and taxotere on primary cultures and established cell lines of human ovarian cancer. Stem Cells, 1993, 11, 528-535. 209
3.2 14Lonidamine as a modulator of taxol activity in human ovarian cancer cells: effects on cell cycle and14
210 Lonidamine as a modulator of taxol activity in
induction of apoptosis. , 1998, 78, 377-384.
211 Design of Disruptors of the Hsp90â€"Cdc37 Interface. Molecules, 2020, 25, 360.3.814MicroRNA-dependent Regulation of Telomere Maintenance Mechanisms: A Field as Much Unexplored as1.914Potentially Promising. Current Pharmaceutical Design, 2014, 20, 6404-6421.In vitro effect of lonidamine on the cytotoxicity of mitomycin C and BCNU in human colon2.813adenocarcinoma cells. European Journal of Cancer, 1994, 30, 1534-1540.Modulation of melphalan and cisplatin cytotoxicity in human ovarian cancer cells resistant to
217 Evaluation of Mediators Associated with the Inflammatory Response in Prostate Cancer Patients1.3
220 Prostate Cancer. Cancers, 2021, 13, 2380.
Transforming the Chemical Structure and Bioâ€Nano Activity of Doxorubicin by Ultrasound for Selective Killing of Cancer Cells. Advanced Materials, 2022, 34, e2107964.$21.0 \quad 12$
223 Fludarabine as a modulator of cisplatin activity in human tumour primary cultures and established cell lines. European Journal of Cancer, 1996, 32, 1766-1773.

Targeting MicroRNAs to Withstand Cancer Metastasis. Methods in Molecular Biology, 2015, 1218,
225 Synergistic Interaction of Histone Deacetylase 6-and MEK-Inhibitors in Castration-Resistant Prostate $225 \quad$ Cancer Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 610.
miR-1272 Exerts Tumor-Suppressive Functions in Prostate Cancer via HIP1 Suppression. Cells, 2020, 9, 435.
Structural Requirements of Benzofuran Derivatives Dehydro-í'- and Dehydro-̂̂ μ-Viniferin for
Antimicrobial Activity Against the Foodborne Pathogen Listeria monocytogenes. International Journal
of Molecular Sciences, 2020, 21, 2168 .
Heterogeneous Radiation and Heat Sensitivityin Vitroof Human Melanoma Xenograft Lines Established 230 from Different Lesions in the Same Patient. International Journal of Radiation Biology, 1990, 57,1.810
1113-1122.
231 Ligands Tethering to Biocompatible Ultrasound Active Polymeric Microbubbles Surface. 0.7 10
Overactive IGF1/Insulin Receptors and NRASQ61R Mutation Drive Mechanisms of Resistance to
232 Pazopanib and Define Rational Combination Strategies to Treat Synovial Sarcoma. Cancers, 2019, 11, 3.7 10 408.
235 Breast Cancer-Initiating Cells: Insights into Novel Treatment Strategies. Cancers, 2011, 3, 1405-1425.

237	Synthetic sulfoglycolipids targeting the serineâ€"threonine protein kinase Akt. Bioorganic and Medicinal Chemistry, 2016, 24, 3396-3405.	3.0	9
238	Synthesis and Superpotent Anticancer Activity of Tubulysins Carrying Nonâ€hydrolysable Nâ€£ubstituents on Tubuvaline. Chemistry - A European Journal, 2017, 23, 5842-5850.	3.3	9
239	New Imidazo [2,1-<i>b</i>][1,3,4]Thiadiazole Derivatives Inhibit FAK Phosphorylation and Potentiate the Antiproliferative Effects of Gemcitabine Through Modulation of the Human Equilibrative Nucleoside Transporter-1 in Peritoneal Mesothelioma. Anticancer Research, 2020, 40, 4913-4919.	1.1	9
240	Upregulation of ERK-EGR1-heparanase axis by HDAC inhibitors provides targets for rational therapeutic intervention in synovial sarcoma. Journal of Experimental and Clinical Cancer Research, 2021, 40, 381.	8.6	9
241	Bone osteoblastic and mesenchymal stromal cells lack primarily tumoral features in multiple myeloma patients. Leukemia, 2010, 24, 1368-1370.	7.2	8

Neoadjuvant sorafenib, gemcitabine, and cisplatin administration preceding cystectomy in patients
242 with muscle-invasive urothelial bladder carcinoma: An open-label, single-arm, single-center, phase 2
1.68 study. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 8.e1-8.e8.

$$
243 \text { Selinexor Sensitizes TRAIL-R2-Positive TNBC Cells to the Activity of TRAIL-R2xCD3 Bispecific Antibody. }
$$ Cells, 2020, 9, 2231.

244 SPOP Deregulation Improves the Radiation Response of Prostate Cancer Models by Impairing DNA Damage Repair. Cancers, 2020, 12, 1462.
$3.7 \quad 8$
245 Prediction of Grade Reclassification of Prostate Cancer Patients on Active Surveillance through the

245 Combination of a Three-miRNA Signature and Selected Clinical Variables. Cancers, 2021, 13, 2433.
$3.7 \quad 8$

246 miR-34a-Mediated Survivin Inhibition Improves the Antitumor Activity of Selinexor in Triple-Negative Breast Cancer. Pharmaceuticals, 2021, 14, 523.
3.8

8
247 Synthesis and in Vitro Anti-Proliferative Activity of Racemic Trifluoro-Casodex\&\#174; (Bicalutamide).
$247 \quad$ Letters in Organic Chemistry, 2005, 2, 447-449.
$0.5 \quad 7$

Ligand selection from the analysis of protein conformational substates: new leads targeting the
3.6

N-terminal domain of Hsp90. RSC Advances, 2012, 2, 4268.
$\begin{array}{ll}3.6 & 7\end{array}$

Synergistic interaction between the novel histone deacetylase inhibitor ST2782 and the proteasome
249 inhibitor bortezomib in platinum-sensitive and resistant ovarian carcinoma cells. Journal of Inorganic
3.5

Biochemistry, 2012, 113, 94-101.
Synergistic Antitumor Activity of Cetuximab and Namitecan in Human Squamous Cell Carcinoma
250 Models Relies on Cooperative Inhibition of EGFR Expression and Depends on High <i>EGFR</i>Gene
Copy Number. Clinical Cancer Research, 2014, 20, 995-1006.
Novel $20(\langle\mathrm{i}\rangle \mathrm{S}\langle\mid \mathrm{i}\rangle)$-sulfonylamidine derivatives of camptothecin and the use thereof as a potent
251 antitumor agent: a patent evaluation of WO2015048365 (A1). Expert Opinion on Therapeutic Patents,
$5.0 \quad 7$ 2016, 26, 637-642.

253	Luminescent dinuclear rhenium(I) PNA conjugates for microRNA-21 targeting: Synthesis, chemico-physical and biological characterization. Journal of Organometallic Chemistry, 2019, 887, 32-39.	1.8	7
254	Core Biopsies from Prostate Cancer Patients in Active Surveillance Protocols Harbor PTEN and MYC Alterations. European Urology Oncology, 2019, 2, 277-285.	5.4	7
255	MIR205HG/LEADR Long Noncoding RNA Binds to Primed Proximal Regulatory Regions in Prostate Basal Cells Through a Triplex- and Alu-Mediated Mechanism. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	6
256	Absolute and relative activities of platinum-complexes on human tumors as evaluated by an antimetabolic in vitro assay. Investigational New Drugs, 1987, 5, 245-50.	2.6	5
257	Flunarizine as a modulator of doxorubicin resistance in human colon-adenocarcinoma cells. International Journal of Cancer, 1993, 55, 636-639.	5.1	5
258	Modulation of melphalan cytotoxic activity in human melanoma cell lines. Anti-Cancer Drugs, 1996, 7, 604-612.	1.4	5
259	Cytotoxic activity of 2-Fluoro-ara-AMP and 2-Fluoro-ara-AMP-loaded erythrocytes against human breast carcinoma cell lines. International Journal of Oncology, 2010, 37, 133-42.	3.3	5
260	MicroRNAs and the Response of Prostate Cancer to Anti-Cancer Drugs. Current Drug Targets, 2016, 17, 257-265.	2.1	5
261	Comparison of an antimetabolic assay and an antiproliferative assay, both using 3h-thymidine incorporation, to test drug sensitivity of human tumors. International Journal of Cell Cloning, 1988, 6, 392-403.	1.6	4

263 Drug Sensitivity of Different Tumor Lesions from the Same Patient Evaluated by a Short-Term Assay.Tumori, 1988, 74, 137-144.
1.13

264 Activity of a chartreusin analog, elsamicin A, on breast cancer cells. Anti-Cancer Drugs, 1992, 3, 677-682.
1.4

3
265 Effects of liposome-entrapped annamycin in human breast cancer cells: Interference with cell cycle progression and induction of apoptosis. Journal of Cellular Biochemistry, 2001, 81, 9-22.

$$
2.6
$$

Strategies to Translate Preclinical Information to Breast Cancer Patient Benefit. Journal of the
2.1

3
266 National Cancer Institute Monographs, 2011, 2011, 55-59.

$$
\begin{array}{cl}
\text { miR-550a-3p is a prognostic biomarker and exerts tumor-suppressive functions by targeting HSP90AA1 in } \\
\text { diffuse malignant peritoneal mesothelioma. Cancer Gene Therapy, 2022, 29, 1394-1404. }
\end{array}
$$

$$
4.63
$$

ene

269 Therapeutic Uses of Peptide Nucleic Acids (PNA) in Oncology. , 2006, , 171-180.

```
271 miR-1227 Targets SEC23A to Regulate the Shedding of Large Extracellular Vesicles. Cancers, 2021, 13,
5850.
```

Therapeutic uses of peptide nucleic acids (PNA) in oncology. International Journal of Peptide Research and Therapeutics, 2003, 10, 287-296.

273 | Comparative evaluation of C1311 cytotoxic activity and interference with cell cycle progression in a |
| :--- |
| panel of human solid tumour and leukaemia cell lines. International Journal of Oncology, 2007,, . |

274 Targeting Survivin in Cancer Therapy: Pre-clinical Studies. , 2010, , 147-168.
1

$275 \quad$| EORTC-related new drug discovery and development activities: role of the Pharmacology and |
| :--- |
| Molecular Mechanisms Group. European Journal of Cancer, Supplement, 2012, 10, 128-140. |

276 Telomere as a Therapeutic Target in Dedifferentiated Liposarcoma. Cancers, 2022, 14, 2624.
$3.7 \quad 1$
277 Comparison between an antimetabolic assay and a cytocidal assay for in vitro chemosensitivity testing of human tumors. Cytotechnology, 1987, 1, 77-78.

Therapeutic uses of peptide nucleic acids (PNA) in oncology. International Journal of Peptide Research and Therapeutics, 2003, 10, 287-296.
0.1

0
278

$$
\begin{align*}
& 279 \text { Use of ribozymes in validation of targets involved in tumor progression. Drug Discovery Today: } \\
& \text { Technologies, 2004, 1, 119-124. }
\end{align*}
$$

0

280 Therapeutic uses of peptide nucleic acids (PNA) in oncology. International Journal of Peptide Research and Therapeutics, 2005, 10, 287-296.
1.9

0

281	Response to â $€$ Validating a gene expression signature proposed to differentiate liposarcomas that use different telomere maintenance mechanismsâ $€^{\text {TM }}$. Oncogene, 2012, 31, 267-268.	5.9	0
282	New Directions for Biologic Targets in Urothelial Carcinoma â€" Letter. Molecular Cancer Therapeutics, 2012, 11, 2306-2306.	4.1	0
283	Preface: Special Issue on MicroRNAs as Novel Cancer Biomarkers and Therapeutic Targets. Critical Reviews in Oncogenesis, 2013, 18, v-vi.	0.4	0

284 Peritoneal Mesothelioma. Updates in Surgery Series, 2015, , 243-254.
0

[^2]
[^0]: Source: https:/|exaly.com/author-pdf/4630822/publications.pdf
 Version: 2024-02-01

[^1]: 17
 G-Quadruplex Structures in the Human Genome as Novel Therapeutic Targets. Molecules, 2013, 18,
 12368-12395.

[^2]: 285
 MicroRNAs in Prostate Cancer: A Possible Role as Novel Biomarkers and Therapeutic Targets?. , 2011, ,
 145-162.

